
K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-2

Lecture-13

Java Script
JavaScript is the premier client-side interpreted scripting language. It‟s widely used in tasks

ranging from the validation of form data to the creation of complex user interfaces. Dynamic

HTML is a combination of the content formatted using HTML, CSS, Scripting language and

DOM. By combining all of these technologies, we can create interesting and interactive websites.

History of JavaScript:

Netscape initially introduced the language under the name LiveScript in an early beta release of

Navigator 2.0 in 1995, and the focus was on form validation. After that, the language was

renamed JavaScript. After Netscape introduced JavaScript in version 2.0 of their browser,

Microsoft introduced a clone of JavaScript called JScript in Internet Explorer 3.0.

What a JavaScript can do?
JavaScript gives web developers a programming language for use in web pages & allows them to

do the following:

JavaScript gives HTML designers a programming tool

JavaScript can be used to validate data

 JavaScript can read and write HTML elements

Create pop-up windows

Perform mathematical calculations on data

React to events, such as a user rolling over an image or clicking a button

Retrieve the current date and time from a user‟s computer or the last time a document was

modified

Determine the user‟s screen size, browser version, or screen resolution

JavaScript can put dynamic text into an HTML page

JavaScript can be used to create cookies

Advantages of JavaScript:

Less server interaction

 Immediate feedback to the visitors

 Increased interactivity

 Richer interfaces

 Web surfers don‟t need a special plug-in to use your scripts

 Java Script is relatively secure.

Limitations of JavaScript:
We cannot treat JavaScript as a full-fledged programming language. It lacks some of the

important features like:

 Client-side JavaScript does not allow the reading or writing of files. This has been kept for

security reason.

 JavaScript cannot be used for networking applications because there is no such support

available.

 JavaScript doesn't have any multithreading or multiprocess capabilities.

 If your script doesn‟t work then your page is useless.

Points to remember:

 JavaScript is case-sensitive

 Each line of code is terminated by a semicolon

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 Variables are declared using the keyword var

 Scripts require neither a main function nor an exit condition. There are major differences

between scripts and proper programs. Execution of a script starts with the first line of

code & runs until there is no more code

JavaScript comments:

In JavaScript, each line of comment is preceded by two slashes and continues from that point to

the end of the line.

//this is javascript comment
Block comments or Multiline comments: /* */

JavaScript is not the same as Java, which is a bigger programming language (although there are

some similarities)

JavaScript and HTML Page
Having written some JavaScript, we need to include it in an HTML page. We can‟t execute these

scripts from a command line, as the interpreter is part of the browser. The script is included in

the web page and run by the browser, usually as soon as the page has been loaded. The browser

is able to debug the script and can display errors.

Embedding JavaScript in HTML file:

If we are writing small scripts, or only use our scripts in few pages, then the easiest way is to

include the script in the HTML code. The syntax is shown below:

<html>

<head>

<script language=”javascript”>

<!- -

Javascript code here

//- - >

</head>

<body>

……

</body>

</html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Using External JavaScript in HTML file:
If we use lot of scripts, or our scripts are complex then including the code inside the web page

will make the source file difficult to read and debug. A better idea is to put the JavaScript code in

a separate file and include that code in the HTML file. By convention, JavaScript programs are

stored in files with the .js extension.

<html>

<head>

<script language=”javascript” src=”sample.js”> </script>

</head>

<body>

……

</body>

</html>

POPUP BOXES IN JAVASCRIPT

alert(“string”) opens box containing the message

confirm(“string”) displays a message box with OK and CANCEL buttons

prompt(“string”) displays a prompt window with field for the user to enter a text string

Example:

<html>

<head>

<script language="javascript">

function show_alert()

{

alert("Hi! This is alert box!!");

}

</script>

</head>

<body>

<input type="button" onclick="show_alert()" value=“Display alert box" > </input>

</body>

</html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Unit-2

Lecture-14

JavaScript Programming Elements
• Variables, datatypes, operators

• Statements

• Arrays

• Functions

• Objects in JavaScript

• Exception Handling

• Events

• Dynamic HTML with JavaScript

VARIABLES
Like any programming language, JavaScript has variables. A variable is a name assigned to

computer memory location to store data. As the name suggests, the value of the variable can

vary, as the program runs. We can create a variable with the var statement:

var <variablename> = <some value>;

Example:

var sum = 0;

var str;

We can initialize a variable like this:

str = “hello”;

Rules for variable names:
They must begin with a letter, digit or underscore character # We can‟t use spaces in names

Variable names are case sensitive # We can‟t use reserved word as a variable name.

Weakly Typed Language:

 Most high-level languages, including C and Java, are strongly typed. That is, a variable must

be declared before it is used, and its type must be included in its declaration. Once a variable is

declared, its type cannot be changed.

 As the JavaScript is weakly typed language, data types are not explicitly declared.

Example: var num;

num = 3;

num = "San Diego";

First, when the variable num is declared, it is empty. Its data type is actually the type undefined.

Then we assign it to the number 3, so its data type is numeric. Next we reassign it to the string

"San Diego", so the variable‟s type is now string.

Example:
<html>

<body>

<script language=”javascript” type=”text/javascript”>

var s;

s = “Hello”;

alert(typeof s);

s = 54321;

alert(typeof s);

</script> </body> </html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

DATATYPES
• JavaScript supports five primitive data types:

number string boolean undefined null.

• These types are referred to as primitive types because they are the basic building blocks from

which more complex types can be built.

• Of the five, only number, string, and boolean are real data types in the sense of actually

storing data.

• Undefined and null are types that arise under special circumstances.

Numeric Data Type:
These are numbers and can be integers (such as 2, 22 and 2000) or floating-point values (such

as 23.42, -56.01, and 2E45).

 Valid ways to specify numbers in JavaScript

10 177.5 -2.71 .333333e77 -1.7E12 3.E-5 128e+100

We can represent integers in one of the following 3 ways:

Decimal: The usual numbers which are having the base 10 are the decimal numbers

Octal: Octal literals begin with a leading zero, and they consist of digits from zero through

seven. The following are all valid octal literals:

00 0777 024513600

HexaDecimal: Hexadecimal literals begin with a leading 0x, and they consist of digits from 0

through 9 and letters A through F. The following are all valid hexadecimal literals:

0x0 0XF8f00 0x1a3C5e7

Special Numeric Values:

Special value

Result of Comparisions

Infinity, -Infinity Number too large or too small

to represent

All infinity values compare

equal to each other

NaN Undefined Operation NaN never compares equal to

anything, even to itself

Operators in JavaScript
The operators in JavaScript can be classified as follows:

Arithmetic operators

Relational operators

Logical operators

Assignment operators

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Arithmetic operators:

Note: If the arguments of + are numbers then they are added together. If the arguments are

strings then they are concatenated and result is returned.

Example:

<html>

<body>

<script language="JavaScript">

<!--

var a = 5;

++a;

alert("The value of a = " + a);

-->

</script>

</body>

</html>

String (+) Operator:

Example:
txt1="Welcome";

txt2="to L&T Infotech Ltd.!";

txt3=txt1 + " " + txt2;

(or)

txt1="Welcome ";

txt2="to CMRCET.!";

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

txt3=txt1 + txt2;

Relational operators/Comparison operators: Relational operators are used to compare

quantities.

Conditional Operator: Conditional operator is one the JavaScript‟s comparison operator, which

assigns a value to a variable based on some condition.

Syntax :

variablename=(condition)? value1 : value2;

Logical operators: Logical operators are used to combine two or more conditions.

Example (Logical operators):

<html>

<head>

<title>Operator Example</title>

</head>

<body>

<script language="JavaScript">

<!--

var userID ;

var password;

userID = prompt("Enter User ID"," ");

password = prompt("Enter Password"," ");

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

if(userID == "user" && password == "secure")

alert("Valid login");

else

alert("Invalid login");

-->

</script>

</body>

</html>

Assignment Operators: are used to assign the result of an expression to a variable.

The typeof operator

typeof operator is used to verify the type of the variable or value.

The typeof operator takes one parameter: the variable or value to check

Calling typeof on a variable or value returns one of the following values:

– “undefined” if the variable is of the Undefined type.

– “boolean” if the variable is of the Boolean type.

– “number” if the variable is of the Number type.

– “string” if the variable is of the String type.

– “object” if the variable is of a reference type or of the Null type

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example:
var s = “test string”;

alert(typeof s); //outputs “string”

alert(typeof 95); //outputs “number”

alert(typeof window); //outputs “object”

STATEMENTS

Programs are composed of two things : data and code (set of statements) which manipulates the

data. Java script Statements can be divided into the following categories:

– Conditional Statements

– Looping Statements

– Jumping Statements

Conditional statements: Conditional statements are used to make decisions.

Various conditional statements in JavaScript:

Various forms of if

switch

Various forms of if:
Simple if

if-else Statement

nested if

else-if ladder

Example:

<html>

<body>

<script language=“javascript”>

var d = new Date();

var time = d.getHours();

if (time < 10)

document.write("Good morning");

else

document.write("Good day");

</script>

<p> This example demonstrates the If...Else statement. </p>

<p> If the time on your browser is less than 10, you will get a "Good morning" greeting.

Otherwise you will get a "Good day" greeting. </p>

</body>

</html>

Output:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

switch statement:
A switch statement allows a program to evaluate an expression and attempt to match the

expression's value to a case label. If a match is found, the program executes the associated

statement.

Syntax
switch (expression)

{

case label1: block1

break;

case label2: block2

break;

….

default: def block;

}

Example:

<html>

<body>

<script language=“javascript”>

var d = new Date();

var theDay=d.getDay();

switch (theDay)

{

case 5: document.write("Finally Friday"); break;

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

case 6: document.write("Super Saturday"); break;

case 0: document.write("Sleepy Sunday"); break;

default: document.write("I'm really looking forward to this weekend!");

}

</script>

<p>This JavaScript will generate a different greeting based on what day it is. Note that

Sunday=0, Monday=1, Tuesday=2, etc.</p>

</body> </html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Looping statements: Loops are used to execute certain statements repeatedly. The various loops

in JavaScript are:

• for loop

• while loop

• do-while loop

for loop syntax:

for(initialization; condition; loop variable update)

{

Set of statements

}

Example (for loop):
<html>

<body>

<script language=“javascript”>

for (var i = 1; i <= 6; i++)

{

document.write("<h" + i + ">This is header " + i + "</h" + i + ">");

}

</script>

</body>

</html>

for- in loop:

The for-in loop has a special use to enumerate all the properties contained within an object. This

loop is rarely used in regular JavaScript.

Example: Display window object properties

var i, a = “”;

for(i in window)

a += i + “…”;

alert(a);

while loop: executes the statements as long as the condition is true.

Syntax: while(condition)

{

Set of statements

}

Example:
<html>

<body>

<script language=“javascript”>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

var i=0;

while (i<=10)

{

document.write("The number is " + i);

document.write("
");

i=i+1;

}

</script>

</body>

</html>

do-while syntax:
do

{

Set of statements

}while(condition);

Jumping Statements:

break statement:
break statement is used to terminate a loop, switch, or label statement.

When we use break without a label, it terminates the innermost enclosing while, do-while, for, or

switch immediately and transfers control to the following statement.

When we use break with a label, it terminates the specified labeled statement

Syntax:

– break;

– break label;

continue statement:

When we use continue without a label, it terminates the current iteration of the innermost

enclosing while, do-while or for statement and continues execution of the loop with the next

iteration.

When we use continue with a label, it applies to the looping statement identified with that label.

Syntax:
– continue;

– continue label;

WORKING WITH ARRAYS
An array is an ordered set of data elements which can be accessed through a single variable

name. In many programming languages arrays are contiguous areas of memory which means that

the first element is physically located next to the second and so on. In JavaScript, an array is

slightly different because it is a special type of object and has functionality which is not normally

available in other languages.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Basic Array Functions: The basic operations that are performed on arrays are creation, addition

of elements (inserting elements), accessing individual elements, removing elements.

Creating Arrays: We can create arrays in several ways:

• var arrayObjectName = [element0, element1, ..., element N];

• var arrayObjectName = new Array(element0, element1, ..., element N);

• var arrayObjectName = new Array(arrayLength);

Ex:

• var colors = ["Red", "Green", "Blue"];

• var colors = new Array("Red", "Green", "Blue");

• var colors = Array("Red", "Green", "Blue");

• var thirdArray = [,,,,];

• var fourthArray = [,,35,,,16,,23,];

Note: JavaScript arrays can hold mixed data types as the following example shows:

var a = [“Monday”, 34, 45.7, “Tuesday”];

Accessing Array Elements:

Array elements are accessed through their index. The length property can be used to know the

length of the array. The index value runs from 0 to length-1.

Example:
<script language="javascript">

var a = [1,2,3];

var s = "";

for(var i=0;i<a.length;i++)

{

s += a[i] + " ";

}

alert(s);

</script>

Adding elements to an array:
What happens if we want to add an item to an array which is already full? Many languages

struggle with this problem. But JavaScript has a really good solution: the interpreter simply

extends the array and inserts the new item.

Ex: var a = [“vit”,”svecw”,”sbsp”];

a[3] = “bvrit”;

a[10] = “bvrice”; //this extends the array and the values of elements a[4] to a[9] will be

undefined.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Modifying array elements:
Array element values can be modified very easily.

Ex: To change a[1] value to “vdc” simply write:

a[1] = “vdc”;

Searching an Array:
To search an array, simply read each element one by one & compare it with the value that we are

looking for.

Removing Array Members:

JavaScript doesn‟t provide a builtin function to remove array element. To do this, we can use the

following approach:

read each element in the array

if the element is not the one you want to delete, copy it into a temporary array

if you want to delete the element then do nothing

increment the loop counter

repeat the process

finally store the temporary array reference in the main array variable

Note: The statement delete a[0] makes the value of a[0] undefined

OBJECT-BASED ARRAY FUNCTIONS:

In JavaScript, an array is an object. So, we can use various member functions of the object to

manipulate arrays.

concat()
The concat() method returns the array resulting from concatenating argument arrays to the array

on which the method was invoked. The original arrays are unaltered by this process.

Syntax: array1.concat(array2 [, array3,…arrayN]);

Example:
<script language="javascript">

var a = [1,2,3];

var b = ["a","b"];

alert(a.concat(b));

</script>

join()
join() method allows to join the array elements as strings separated by given specifier.The

original array is unaltered by this process.

Syntax: arrayname.join(separator);

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example:
<script language="javascript">

var a = [1,2,3];

alert(a.join(“#”));

</script>

push()

push() function adds one or more elements to the end of an array and returns the last element

added.

Syntax: arrayname.push(element1 [, element2, ..elementN]);

Example:

<script language="javascript">

var a = [1,2,3];

alert(a.push(4,5)); //displays 5

alert(a); //displays 1,2,3,4,5

</script>

pop()

pop() removes the last element from the array and returns that element

Syntax: arrayname.pop();

reverse()
reverse() method transposes the elements of an array: the first array element becomes the last

and the last becomes the first. The original array is altered by this process.

Syntax: arrayname.reverse();

Example:
<script language="javascript">

var a = [1,2,3];

a.reverse();

alert(a);

</script>

shift()
shift() removes the first element of the array and in doing so shortens its length by one. It returns

the first element that is removed.

Ex: var a = [1, 2, 3];

var first = a.shift();

alert(a); // 2,3

alert(first); //1

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

unshift()
unshift() adds one or more elements to the front of an array.

Syntax: arrayname.unshift(element1 [, element2, ..elementN]);

Example:

var a = ["x","y","z"];

a.unshift("p","q");

alert(a); //p,q,x,y,z

slice()

slice() returns a “slice” (subarray) of the array on which it is invoked. The method takes two

arguments, the start and end index, and returns an array containing the elements from index

start up to but not including index end. If we specify only first parameter, then array containing

the elements from start to the end of the array are returned. The original array is unaltered by this

process.

Syntax: arrayname.slice(startindex , endindex);

Example:
var a = [1, 2, 3, 4, 5];

a.slice(2); // returns [3, 4, 5]

a.slice(1, 3); // returns [2, 3]

splice()
The splice() method can be used to add, replace, or remove elements of an array in place. Any

elements that are removed are returned. It takes a variable number of arguments, the first two

arguments are mandatory. The original array is altered by this process.

Syntax : arrayname.splice(start, deleteCount, replacevalues);

The first argument start is the index at which to perform the operation.

The second argument is deleteCount, the number of elements to delete beginning with index

start. If we don‟t want to delete any elements specify this value as 0.

Any further arguments represented by replacevalues (that are comma-separated, if more than

one) are inserted in place of the deleted elements.

Example:
var myArray = [1, 2, 3, 4, 5];

myArray.splice(3,2,''a'',''b''); // returns 4,5

alert(a); //1,2,3,a,b

sort()
sort() method sorts the array into lexicographic order. Elements which are not text are converted

into strings before the sort operation is performed. This means, for example,732 will be placed

before 80 in the sorted array. Original array is altered by this process.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example1:
var myArray = ["cse","ece","eee"];

myArray.sort();

alert(myArray);

Example2:
var a = [80,732,450];

a.sort();

alert(a); //450,732,80

**

STRINGS
String is a set of characters enclose in a pair of single quotes or double quotes. In JavaScript

using string object, many useful string related functionalities can be done. Some commonly used

methods of string object are concatenating two strings, converting the string to uppercase or

lowercase, finding the substring of a given string and so on.

PROPERTY:

length
This property of string returns the length of the string

Example: “cmr”.length //gives 3

METHODS:

charAt(index)
This method returns the character specified by index

Example: alert(“cmrcet”.charAt(2));

indexOf(substring [, offset])

This method returns the index of substring found in the main string. If the substring is not found

returns -1. By default the indexOf() function starts index 0, however, an optional offset may be

specified, so that the search starts from that position.

Example: “cmrcet”.indexOf(“sv”);

“Department of CSE”.indexOf(“CS”,5);

lastIndexOf(substring [,offset])

This method returns the index of substring found in the main string (i.e. last occurence). If the

substring is not found returns -1. By default the lastIndexOf() function starts at index

string.length-1, however, an optional offset may be specified, so that the search starts from that

position in backwards.

Example: “cmrcet”.lastIndexOf(“cet”); //returns

“cmrcet”.lastIndexOf(“cet”,6); //returns

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

str1.concat(str2 [,str3 ..strN])
This method is used to concatenate strings together. For example, s1.concat(s2) returns the

concatenated string of s1 and s2. The original strings don‟t get altered by this operation.

substring(start [,end])

This method returns the substring specified by start and end indices (upto end index, but not the

character at end index). If the end index is not specified, then this method returns substring from

start index to the end of the string.

Example: “vitsvecw”.substring(3,6); //returns sve

“vitsvecw”.substring(3); //returns svecw

substr(index [,length])

This method returns substring of specified number of characters (length), starting from index.

If the length is not specified it returns the entire substring starting from index.

Example: “vitsvecw”.substr(3,2); //returns sv

“vitsvecw”.substr(3); //returns svecw

toLowerCase()
returns the string in lower case. The original string is not altered by this operation.

Example: <script language="javascript">

var s="CMRcet";

alert(s.toLowerCase());

alert(s); /

</script>

toUpperCase()

returns the string in upper case. The original string is not altered by this operation.

Example: <script language="javascript">

var s="Cmrcet";

alert(s.toUpperCase()); //displays

alert(s);

</script>

split(separator [,limit])
Splits the string based on the separator specified and returns that array of substrings. If the limit

is specified only those number of substrings will be returned

Example1: <script language="javascript">

var s="vit#svecw#bvrice#sbsp";

var t =s.split("#");

alert(t);

</script>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example2: <script language="javascript">

var s="cse#ece#mech#it";

var t =s.split("#");

alert(t); //displays cse,ece,mech,it

</script>

Write Javascript that determines whether the given string is palindrome or not

<html>

<body>

<script language="javascript">

var s = prompt("enter any string");

var n = s.length;

var flag=true;

for(var i=0; i<n;i++)

{

if(s.charAt(i) != s.charAt(n-1-i))

{

flag=false; break;

}

}

if(flag) alert("palendrome");

else alert("not palendrome");

</script>

</body>

</html>

STRING METHODS USED TO GENERATE HTML:
string.anchor(“anchorname”) string.link(url)

string.blink() string.big()

string.bold() string.small()

string.fixed() string.strike()

string.fontcolor(colorvalue) string.sub()

string.fontsize(integer 1 to 7) string.sup()

string.italics()

Example: <script language="javascript">

var s = "Test".bold(); //s value is: Test

document.write(s);

document.write("
");

document.write("CMRCET".italics());
</script>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

FUNCTIONS

A function is a piece of code that performs a specific task. The function will be executed by an

event or by a call to that function. We can call a function from anywhere within the page (or

even from other pages if the function is embedded in an external .js file). JavaScript has a lot of

builtin functions.

Defining functions:
JavaScript function definition consists of the function keyword, followed by the name of the

function.

A list of arguments to the function are enclosed in parentheses and separated by commas. The

statements within the function are enclosed in curly braces { }.

Syntax:

function functionname(var1,var2,...,varX)

{

some code

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

}

Parameter Passing:

Not every function accepts parameters. When a function receives a value as a parameter, that

value is given a name and can be accessed using that name in the function. The names of

parameters are taken from the function definition and are applied in the order in which

parameters are passed in.

• Primitive data types are passed by value in JavaScript. This means that a copy is made of a

variable when it is passed to a function, so any manipulation of a parameter holding primitive

data in the body of the function leaves the value of the original variable untouched.

• Unlike primitive data types, composite types such as arrays and objects are passed by reference

rather than value.

Examining the function call:

In JavaScript parameters are passed as arrays. Every function has two properties that can be used

to find information about the parameters:

functionname.arguments
This is an array of parameters that have been passed

functionname.arguments.length
This is the number of parameters that have been passed into the function

Example:
<html>

<body>

<script language="javascript">

function fun(a,b){

var msg = fun.arguments[0]+".."+fun.arguments[1]; //referring a,b values

alert(msg);

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

fun(10,20); //function call

fun("abc","vit"); //function call

</script>

</body>

</html>

Returning values

The return statement is used to specify the value that is returned from the function. So functions

that are going to return a value must use the return statement.

Example:
function prod(a,b)

{

x=a*b; return x;

}

Scoping Rules:

Programming languages usually impose rules, called scoping, which determine how a variable

can be accessed. JavaScript is no exception. In JavaScript variables can be either local or global.

global
Global scoping means that a variable is available to all parts of the program. Such variables are

declared outside of any function.

local

Local variables are declared inside a function. They can only be used by that function.

GLOBAL FUNCTIONS

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

EXCEPTION HANDLING

Runtime error handling is vitally important in all programs. Many OOP languages provide a

mechanism for handling with general classes of errors. The mechanism is called Exception

Handling.

An exception in object-based programming language is an object, created dynamically at run-

time, which encapsulates an error and some information about it. In Java Script it returns an error

object when an error is generated at browser while the code is executing.

try-catch block
The block of code that might cause the exception is placed inside try block. catch block contains

statements that are to be executed when the exception arises.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

try { statement one

statement two

statement three

} catch(Error) { //Handle errors here } finally { // execute the code even regardless of above

catches are matched }

try{

alert(„This is code inside the try clause‟);

ablert („Exception will be thrown by this code‟);

}

catch(exception)

{

alert(“Internet Explorer says the error is “ + exception.description);

}

throw statement

The throw statement allows us to create an exception. If we use this statement together with the

try...catch statement, we can control program flow and generate accurate error messages.

Syntax

throw(exception)

The exception can be a string, integer, Boolean or an object

Example:

<html> <body> <script type="text/javascript"> var x=prompt("Enter a number between 0 and

10:",""); try { if(x>10) { throw "Error! The value is too high“;

} else if(x<0) { throw "Error! The value is too low“;

} else if(isNaN(x)) { throw "Error! The value is not a number"; } } catch(er) { alert(er); }

</script> </body> </html>

Document Object Model (DOM)

The DOM defines what properties of a document can be retrieved and changed, and the methods

that can be performed. (or)

The Browser DOM specifies how JavaScript (and other programming languages) can be used to

access information about a document. Then you can perform calculations and decisions based

on the values retrieved from the document using JavaScript

Example: We can retrieve properties such as the value of the height attribute of any image, the

href attribute of any link, or the length of a password entered into a text box in a form.

Meanwhile, methods allow us to perform actions such as reset() or submit() methods on a form

that allows you to reset or submit a form.

DOM Hierarchy

 The objects in the web page follow a strict hierarchy, where the window object is the very top

level. Because window is the top level “root” object it can be omitted in the address syntax. For

instance, the window.document.bgColor property, which stores the value of the window‟s

current background color, can be addressed simply as document.bgColor

 Several of the DOM objects have properties that contain an array of elements in that web

page. For example, with document.images[], the images[] array is a property of the document

object that will store the URL address of each image contained on that web page.The URL of the

first image in the HTML code is stored in the array at document.images[0]

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

BUILT-IN OBJECTS IN JAVASCRIPT
Javascript has many built-in objects which posses the capability of performing many tasks.

Hence sometimes Javascript is referred to as an Object based programming language.

Now we will discuss few commonly used objects of javascript along with their attributes &

behaviors.

THE WINDOW OBJECT

PROPERTIES:

frames[]

array of frames stored in the order in which they are defined in the document

frames.length

number of frames

self

current window

opener

the window (if any) which opened the current window

parent

parent of the current window if using a frameset

status

message in the status bar

defaultStatus

default message for the status bar

name

the name of the window if it was created using the open() method and a name was specified

location

this object contains the full URL address of the document that is currently loaded in the browser,

and assigning a new value to this will load the specified URL into the browser.

A typical URL address may comprise these parts:

Protocol: // host / pathname ? #hash

We can use the following properties of location object to extract individual pieces of information

from URL

window.location.href

window.location.protocol

 window.location.host

window.location.pathname

 window.location.hash

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

history
The window.history object contains history (i.e. array of URL addresses previously visited

during a browser session). For security reasons, these are not directly readable but they are used

to navigate back to previous pages. The back() and forward() methods of the window.history

object emulate the browser‟s Back and Forward buttons. More flexible navigation is often

provided by the window.history.go() method.

Example: window.history.go(1) goes forward to the next page in the history

window.history.go(-2) goes backward by 2 pages in the history

window.history.go(0) causes the browser to reload the current document.

Example:

<html>

<head>

<script language="javascript">

function fun()

{

var n = prompt("enter any number");

window.history.go(n);

}

</script>

</head>

<body>

<form>

<h1>CMRCET</h1>

<h2>Medchal</h2>

<input type="button" value="navigate" onclick=fun()>

</form>

</body>

</html>

onload
This object can be used to specify the name of a function to be called immediately after a

document has completely loaded in the browser

Example:

<html>

<head>

<script language="javascript">

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

window.onunload=fun;

function fun(){

alert("number of frames = " + window.frames.length);

}

</script>

</head>

<frameset rows="30%,30%,*">

<frame name="row1" src="page1.html">

<frame name="row2" src="page2.html">

<frame name="row3" src="page3.html">

</frameset>

</html>

onunload
This object can be used to specify the name of a function to be called when the user exits the web

page.

METHODS:

alert(“string”)
opens box containing the message

confirm(“string”)
displays a message box with OK and CANCEL buttons

prompt(“string”)
displays a prompt window with field for the user to enter a text string

blur()
remove focus from current window

focus()
give focus to current window

scroll(x,y)
move the current window to the chosen x,y location

open(“URL”, ”name”, “options string”)
The open() method has 3 arguments:

 URL to load in the pop-up window

 Name for the pop-up

 List of options

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example:
newWin = window.open(address,”newWin”, “status=0, width=100, height=100, resizable=0”);

The open() method can take the following options:

toolbar = [1|0] location = [1|0] directories = [1|0] status = [1|0] menubar = [1|0]

scrollbars = [1|0] resizable = [1|0] width = pixels height = pixels

Many of the attributes of a browser window are undesirable in a pop-up window. They can be

switched on and off individually

close()

This shuts the current window

Note: Because window is the top level “root” object, it can be omitted in the address syntax.

Therefore we can refer its properties directly

Example: window.document.bgColor (or) document.bgColor

window.alert() (or) alert()

THE DOCUMENT OBJECT

A document is a web page that is being either displayed or created. The document has a number

of properties that can be accessed by JavaScript programs and used to manipulate the content of

the page.

PROPERTIES:

bgColor
Background color of the document

Example: write a javascript that designs 3 buttons “red”, “green”, and “yellow”. When ever the

button is clicked, the document color should change accordingly

<html>

<head>

<script language="javascript">

function changecolor(s)

{

window.document.bgColor=s;

}

</script>

</head>

<body>

<form>

<input type="button" value="red" onclick="changecolor('red')">

<input type="button" value="green" onclick="changecolor('green')">

<input type="button" value="yellow" onclick="changecolor('yellow')">

</form>

</body> </html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

fgColor
Foreground color of the document

title
Title of the current document

location
This object contains the full URL address of the document that is currently loaded in the

browser, and assigning a new value to this will load the specified URL into the browser.

Example:

<html>

<body>

<script language="javascript">

document.title="cmrcet";

function fun(){

document.location="page1.html";

}

</script>

<input type="button" value="change url" onclick="fun()">

</body>

</html>

lastModified

Object that provides information about date and time when a webpage was last modified. This

data is usually supplied to document.lastModified from the HTTP file header that is sent by the

web server

Example:

<html>

<body>

<script language="javascript">

window.status = "Last updated " + document.lastModified;

</script>

<h1> CMRCET</h1>

CMRCET was established in the year 2002.

</body>

</html>

linkColor, vlinkColor,alinkColor

These can be used to set the colors for the various types of links

forms[] array of forms on the current page

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

forms.length
the number of form objects on the page

links[]
array of links in the current page in the order in which they appear in the document

anchors[]
an array of anchors. Any named point inside an HTML document is an anchor. Anchors are

create using . These will be commonly used for moving around inside a large page.

The anchors property is an array of these names in the order in which they appear in the HTML

document. Anchors can be accessed like this: document.anchors[0]

images[]

an array of images

applets[]

an array of applets

cookie

object that stores information about cookie

Methods:

write(“string”)
write an arbitrary string to the HTML document

writeln(“string”)
write a string to the HTML document and terminate it with a newline character. HTML pages

can be created on the fly using JavaScript. This is done using the write or writeln methods of the

document object.

Example:
document.write(“<body>”);

document.write(“<h1>CMRCET</h1>”);

document.write(“<form>”);

clear()
clear the current document

close()
close the current document

getElementById()
Returns the reference of the form control given by its Id

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

DATE OBJECT
This object is used to obtain the date and time. This date and time is based on computer‟s local

time (system‟s time) or it can be based on GMT. This GMT is also known as UTC i.e. Universal

Coordinated Time. This is basically a world time standard.

Following are the commonly used methods of

Date object:

Method

Meaning
getTime() It returns the number of milliseconds. This

value is the difference between the current time

and the time value from 1st January 1970

getDate() Returns the current date based on computers

local time

getUTCDate() Returns the current date obtained from UTC

getDay() Returns the current day. The day number is

from 0 to 6 i.e. from Sunday to Saturday

getUTCDay() Returns the current day based on UTC. The

day number is from 0 to 6

getHours() Returns the hour value ranging from 0 to 23

getUTCHours() Returns the hour value ranging from 0 to 23,

based on UTC timing zone

getMinutes Returns the minute value ranging from 0 to 59

getUTCMinutes() Returns the minute value ranging from 0 to 59,

based on UTC

getSeconds() Returns the seconds value ranging from 0 to 59

getUTCSeconds() Returns the seconds value ranging from 0 to

59, based on UTC

getMilliseconds() Returns the milliseconds value ranging from 0

to 999, based on local time

getUTCMilliseconds() Returns the milliseconds value ranging from 0

to 999, based on UTC

setDate(value) This is used to set the Date

setHour(hr,min,sec,ms) This is used to set the Hour

Example:

<html>

<head>

<title>Date Object</title>

</head>

<body>

<script type="text/javascript">

var d = new Date();

document.write("The Date is: "+d.toString()+"
");

document.write("Today date is: "+d.getDate()+"
");

document.write("UTC date is: "+d.getUTCDate()+"
");

document.write("Minutes: "+d.getMinutes()+"
");

document.write("UTC Minutes: "+d.getUTCMinutes()+"
");

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

</script>

</body> </html>

MATH OBJECT
For performing the mathematical computations there are some useful methods available from

math object.

 sqrt(num)

 abs(num)

 ceil(num)

 floor(num)

 log(num)

 pow(a,b)

 min(a,b)

 max(a,b)

 sin(num)

 cos(num)

 tan(num)

 exp(num)

 asin(value)

 acos(value)

 atan(value)

random() - returns a psuedorandom number between 1 to 1

round(value)

In addition to the above methods, it has several properties (Numeric constants) like:

Math.E Euler constant

Math.PI 3.14159

Math.SQRT_2 The square root of 2

Math.SQRT1_2 The square root of ½

Math.LN2 Log of 2

Math.LN10 Log of 10

Example:

<html>

<body>

<script language="javascript">

var n = prompt("enter any number");

alert("square root is "+Math.sqrt(n));

</script>

</body>

</html>

Exercise1:
1.Write a JavaScript program that generates the following table for the given value of n

Number Square

1 1

2 4

3 9

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

4 16

<html>

<body>

<table border=1>

<tr> <th>Number <th>Square </tr>

<script language="javascript">

var n = prompt("enter n");

for(i=1;i<=n;i++)

{

document.write("<tr><td>"+i+"<td>"+(i*i)+"</tr>");

}

</script>

</table>

</body>

</html>

FORM OBJECT
The window.document.forms object contains an array of all the forms in a HTML document,

indexed in the order in which they appear in the HTML code.

For example, window.document.forms[0] addresses the first form to appear in the HTML code

of a web page.

If the id attribute of the <form> element has been assigned a value, then the form can be

addressed by name.

For example, a form named reg can be addressed as document.forms.reg

All the attributes assigned in the <form> tag can be accessed as properties of that form object.

Example:

<html>

<head>

<script language=”javascript”>

window.onload = fun;

function fun()

{

var msg = “Form name: “ + document.forms.reg.id;

msg += “\nMethod: “ + document.forms.reg.method;

msg += “\nAction: “ + document.forms.reg.action;

window.alert(msg);

}

</script>

</head>

<body>

<form id=”reg” method=”post” action=mailto:abc@xyz.com>

Name: <input type="text" size=10>

Age: <input type="text" size=5>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

</form>

</body>

</html>

Form elements:

The elements of the form are held in the array window.document.forms[].elements[]

The properties of the form elements can be accessed and set using Javascript.

The elements of the form are held in the array window.document.forms[].elements[]

The properties of the form elements can be accessed and set using Javascript.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example1:
<html>

<head>

<script language="javascript">

function fun(){

var msg = "Element type: " + document.forms.reg.elements[0].type;

msg += "\nElement value: " + document.forms.reg.elements[0].value;

window.alert(msg);

}

</script>

</head>

<body>

<form id="reg">

<input type="button" value="click" name="btn1" onClick="fun()">

</form>

</body>

</html>

Example2:

<!--It is useful to change the label that is displayed on a button by its value attribute if that

button performs dual actions

-->
<html>

<head>

<script language="javascript">

var running=false; var num=0;

var tim;

function startstop(){

running = !running; count();

document.forms[0].btn1.value = (running) ? "stop" : "start";

}

function count(){

if(running){

num++;

window.status = "seconds elapsed: " + num;

tim = setTimeout("count()", 1000);

}

else{

num=0; clearTimeout(tim);

}

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

</script>

</head>

<body>

<form>

<input type="button" value="start" name="btn1" onClick="startstop()">

</form>

</body>

</html>

form Object properties, methods

Properties:

name
the name of the form

method
submission method in numeric form. 0 = GET, 1 = POST

action
the action attribute of the form

target
if specified this is the target window for responses to the submission of the form

elements[]
an array containing the form elements in the order in which they are declared in the document

length
the number of elements in the form

Methods:

submit()

submits the form

reset()

resets the form i.e. form controls will be set to default values

Radio Buttons

Radio Buttons allow to select one option from a list of options.

Radio Buttons can be created using <input type=”radio”>

In the browser DOM the radio button group creates a document.form object with the given

name

Example: Radio Buttons
<html>

<head>

<script language="javascript">

function radio_info()

{

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

var msg="1st radio value = " + document.forms[0].rbnBranch[0].value;

msg += "\n 2nd radio value = " + document.forms[0].rbnBranch[1].value;

msg += "\n 3rd radio value = " + document.forms[0].rbnBranch[2].value;

msg += "\n 4th radio value = " + document.forms[0].rbnBranch[3].value;

alert(msg);

}

</script>

</head>

<body>

<form id="form1">

The branches in our college are:

<input type="radio" name="rbnBranch" value="cse" selected>CSE

<input type="radio" name="rbnBranch" value="it">IT

<input type="radio" name="rbnBranch" value="ece">ECE

<input type="radio" name="rbnBranch" value="eee">EEE

<input type="button" value="Get Radio Info" onclick="radio_info()">

</form>

</body>

</html>

Radio Polling: The important feature of a radio button is whether it is checked or not. This can

be ascertained from the radio button‟s checked property. It will return true, if the button is

checked otherwise false.

<html>

<head>

<script language="javascript">

function radio_info()

{

var msg="1st radio status = " + document.forms[0].rbnBranch[0].checked;

msg += "\n 2nd radio status = " + document.forms[0].rbnBranch[1].checked;

msg += "\n 3rd radio status = " + document.forms[0].rbnBranch[2].checked;

msg += "\n 4th radio status = " + document.forms[0].rbnBranch[3].checked;

alert(msg);

}

</script>

</head>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

<body>

<form id="form1">

The branches in our college are:

<input type="radio" name="rbnBranch" value="cse" selected>CSE

<input type="radio" name="rbnBranch" value="it">IT

<input type="radio" name="rbnBranch" value="ece">ECE

<input type="radio" name="rbnBranch" value="eee">EEE

<input type="button" value="Get Radio Info" onclick="radio_info()">

</form>

</body>

</html>

Check Boxes

Example:
<html>

<head>

<script language="javascript">

function info()

{

var msg="1st radio status = " + document.forms[0].branch[0].checked;

msg += "\n 2nd radio status = " + document.forms[0].branch[1].checked;

msg += "\n 3rd radio status = " + document.forms[0].branch[2].checked;

msg += "\n 4th radio status = " + document.forms[0].branch[3].checked;

alert(msg);

}

</script>

</head>

<body>

<form id="form1">

The branches in our college are:

<input type="checkbox" name="branch" value="cse">CSE

<input type="checkbox" name="branch" value="it">IT

<input type="checkbox" name="branch" value="ece">ECE

<input type="checkbox" name="branch" value="eee">EEE

<input type="button" value="Get Info" onclick="info()">

</form>

</body>

</html>

Option Lists

The <option> tag can be used in the <select> tag to specify various options in the drop down

menu list.All menu items are stored in the <select> object‟s options[] array. We can use the

selectedIndex property of option list to identify the index of the selected item

Example:

<html>

<head>

<script language="javascript">

function get_selected(){

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

var s = document.forms[0].sltVehicle.selectedIndex;

document.forms[0].txtVehicle.value = document.forms[0].sltVehicle.options[s].text;

}

</script>

</head>

<body>

<form name="form1">

<select name="sltVehicle">

<option value="v"> Volvo </option>

<option value="s" selected> Saab </option>

<option value="m"> Mercedes </option>

<option value="a"> Audi </option>

</select>

<input type="button" value="Show Selected" onClick="get_selected()">

<input type="text" size=15 name="txtVehicle">

</form>

</body>

</html>

Exercise: Write a program that designs a Simple Calculator
<html>

<head>

<script language="javascript">

var exp="";

function fun(ch){

if(ch=='=') {

calc.txt1.value=eval(exp); exp = "";

}

else{

exp = exp + ch; calc.txt1.value=exp;

}

}

</script>

</head>

<body>

<form name="calc">

<table border=1>

<tr>

<th colspan=3>Simple calculator</th>

</tr>

<tr>

<th colspan=3><input type="text" name="txt1" size=15></th>

</tr>

<tr>

<td><input type="button" value="1" onclick="fun('1')"></td>

<td><input type="button" value="2" onclick="fun('2')"></td>

<td><input type="button" value="3" onclick="fun('3')"></td>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

</tr>

<tr>

<td><input type="button" value="4" onclick="fun('4')"></td>

<td><input type="button" value="5" onclick="fun('5')"></td>

<td><input type="button" value="6" onclick="fun('6')"></td>

</tr>

<tr>

<td><input type="button" value="7" onclick="fun('7')"></td>

<td><input type="button" value="8" onclick="fun('8')"></td>

<td><input type="button" value="9" onclick="fun('9')"></td>

</tr>

<tr>

<td><input type="button" value="+" onclick="fun('+')"></td>

<td><input type="button" value="-" onclick="fun('-')"></td>

<td><input type="button" value="=" onclick="fun('=')"></td>

</tr>

</table>

</form>

</body>

</html>

The Browser / Navigator object
No two browser models will process our javascript in the same way. Its important that we find

out which browser is being used to view our page. Then we can make a choice from our visitors:

 Redirect them to a non-scripted version of our site

 Present scripts that are tailored to suit each browser

For historical reasons, browser object is called navigator object

The navigator object has properties that provide information about the browser that is being

used to view a document.

Properties:
Navigator.appCodeName The internal name for the browser. For both major products, this is

Mozilla, which was the name of the original Netscape code source

navigator.appName public name of the browser

navigator.appVersionthe version number, platform on which the browser is running

navigator.userAgent appCodeName + appVersion

navigator.platform platform in which browser in running

navigator.plugins[] array containing details of installed plugins

navigator.mimeTypes array of all supported MIME types. Useful to make sure that the browser

can handle our data

Methods:

navigator.javaEnabled() This method returns true or false depending upon whether java is

enabled or not in the system

Example:
<html>

<head>

<script language="javascript">

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

function fun()

{

if(navigator.javaEnabled()) window.location = "appletpage.html";

else window.location = "nonapplet.html";

}

</script>

</head>

<body>

Vishnu Institute of Technology was established in the year 2008 with four branches. For further

details visit our website

</body>

</html>

COOKIES

 Cookies are small bits of key-value pair information that a Web server sends to a browser

through HTTP response and that the browser later returns unchanged through HTTP

Request when visiting the same Web site or domain.

 A cookie is a small piece of information that is passed back and forth in the HTTP

request and response. The cookie sent by a servlet to the client will be passed back to the

server when the client requests another page from the same application.

 Cookies are tiny files that can be written by javascript to store small amounts of data on

the local hard drive. There are limitations to the use of cookies that restrict their size to 4

kilobytes and web browsers are not required to retain more than 20 cookies per web

server. Typically a cookie may often retain user data for use across web pages or on

subsequent visits to a web site

 Depending on the maximum age of a cookie, the Web browser either maintains the

cookie for the duration of the browsing session (i.e., until the user closes the Web

browser) or stores the cookie on the client computer for future use. When the browser

requests a resource from a server, cookies previously sent to the client by that server are

returned to the server as part of the request formulated by the browser. Cookies are

deleted automatically when they expire (i.e., reach their maximum age).

Benefits of Cookies:

 Identifying a user during an e-commerce session

 Remembering usernames and passwords : Cookies let a user log in to a site

automatically, providing a significant convenience for users of unshared computers.

 Customizing sites: Sites can use cookies to remember user preferences.

 Focusing advertising: Cookies let the site remember which topics interest certain users

and show advertisements relevant to those interests.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 Security Issue: Browsers generally only accept 20 cookies per site and 300 cookies total,

and since browsers can limit each cookie to 4 kilobytes, cookies cannot be used to fill up

someone's disk or launch other denial-of-service attacks.

History:
Cookies were originally invented by Netscape to give 'memory' to web servers and browsers.

The HTTP protocol, which arranges for the transfer of web pages to your browser and browser

requests for pages to servers, is state-less, which means that once the server has sent a page to a

browser requesting it, it doesn't remember a thing about it. So if you come to the same web page

a second, third, hundredth or millionth time, the server once again considers it the very first time

you ever came there.

This can be annoying in a number of ways. The server cannot remember if you identified

yourself when you want to access protected pages, it cannot remember your user preferences, it

cannot remember anything. As soon as personalization was invented, this became a major

problem.

Cookies were invented to solve this problem. There are other ways to solve it, but cookies are

easy to maintain and very versatile.

How cookies work?
A cookie is nothing but a small text file that's stored in your browser. It contains some data:

1. A name-value pair containing the actual data

2. An expiry date after which it is no longer valid

3. The domain and path of the server it should be sent to

As soon as you request a page from a server (which was requested earlier & the server sent

cookie to the client), the cookie is added to the HTTP header. Server side programs can then read

out the information and give response accordingly. So every time you visit the site the cookie

comes from, information about you is available. This is very nice sometimes, at other times it

may somewhat endanger your privacy.

Cookies can be read by JavaScript too. They're mostly used for storing user preferences.

name-value

Each cookie has a name-value pair that contains the actual information. The name of the cookie

is for your benefit, you will search for this name when reading out the cookie information.

Expiry date
Each cookie has an expiry date after which it is trashed. If you don't specify the expiry date the

cookie is trashed when you close the browser. This expiry date should be in UTC (Greenwich)

time.

Domain and path
Each cookie also has a domain and a path. The domain tells the browser to which domain the

cookie should be sent. If you don't specify it, it becomes the domain of the page that sets the

cookie.

document.cookie
Cookies can be created, read and erased by JavaScript. They are accessible through the property

document.cookie. Though you can treat document.cookie as if it's a string, it isn't really, and you

have only access to the name-value pairs.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

If I want to set a cookie for this domain with a name-value pair 'ppkcookie1=testcookie' that

expires in seven days from the moment I write this sentence, I do

document.cookie='ppkcookie1=testcookie; expires=Thu, 2 Aug 2001 20:47:11 UTC; path=/'

Event Handling

An event is defined as “something that takes place” and that is exactly what it means in web

programming as well.

An event handler is JavaScript code that is designed to run each time a particular event occurs.

Syntax for handling the events:

<tag Attributes event=“handler”>

Table: JavaScript Events

Event

Handler Description

blur onBlur The input focus is moved from

the object

change onChange The value of a field in a form

has been changed by

the user entering or deleting

data

click onClick The mouse is clicked over an

element of a page

dblclick onDblClick A form element or link is

clicked twice in rapid

succession

dragdrop onDragDrop A system file is dragged with

a mouse and dropped

onto the browser

focus onFocus Input focus is given to an

element. The reverse of blur

keydown onKeyDown A key is pressed but not

released

keypress onKeyPress A key is pressed

keyup onKeyUp A pressed key is released

load onLoad The page is loaded by the

browser

mousedown onMouseDown A mouse button is pressed

mousemove onMouseMove The mouse is moved

mouseout onMouseOut The mouse pointer moves off

an element

mouseover onMouseOver The mouse pointer moves over

an element

mouseup onMouseUp The mouse button is released

move onMove A window is moved,

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

maximized or restored either

by the user or by a script

resize onResize A window is resized by the

user or by script

submit onSubmit A form is submitted (the

submit button is clicked)

unload onUnload The user leaves the webpage

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Table: Objects and Event Handlers

Object Event Handlers

window onload onunload onblur onfocus

link onclick onmouseout onmouseover

image onabort onerror onload

form onreset onsubmit

text password onblur onchange onfocus

textarea onblur onchange onfocus

button onclick

reset onclick

submit onclick

radio onclick

checkbox onclick

select onblur onchange onfocus

fileupload onblur onchange onfocus

Handling Events
There are two ways to set and execute the JavaScript event handler for an HTML tag:

– Set the event handler property inside HTML

– Set the event handler property inside JavaScript

Set the event handler property inside HTML: Example
<img src=“img.jpg“ id="SampleImage” onmouseover="changeimage(1)”

onmouseout="changeimage(2)" >

Set the event handler property inside JavaScript: Example

<script type="text/javascript" language="javascript">

var img = document.getElementById("SampleImage");

img.onmouseover = changeimageover;

img.onmouseout = changeimageout;

function changeimageover() {

img.src = “flower.jpg";

}

function changeimageout()

{

img.src = “img.jpg";

}

</script>

Example:

<html>

<head>

<script language="javascript">

function change(v)

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

{

var i = document.getElementById("mouse");

if(v==1) i.src="over.gif";

else i.src="out.gif";

}

</script>

</head>

<body>

<form name="form1">

<h1>Demonstrating Rollover Buttons</h1>

<img id="mouse" src="out.gif" width=100 height=100 onMouseOver=change(1)

onMouseOut=change(0)>

</form>

</body>

</html>

Regular Expressions & Pattern Matching

A Regular expression is a way of describing a pattern in a piece of text. It‟s an easy way of

matching a string to a pattern.

We could write a simple regular expression and use it to check, quickly, whether or not any

given string is a properly formatted user input. This saves us from difficulties and allows us to

write clean and tight code.

For instance, a script might take “name” data from a user and have to search through it checking

that no digits have been entered. This type of problem can be solved by reading through the

string one character at a time looking for the target pattern. Although it seems like a

straightforward approach, it is not (Efficiency & speed matters, so any code that does has to be

written carefully). The usual approach in scripting languages is to create a pattern called a

regular expression, which describes a set of characters that may be present in a string.

Creating Regular Expressions:

A regular expression is a JavaScript object. We can create regular expressions in one of two

ways.

 Static regular expressions

Ex: var regex = /fish/fowl/ ;

 Dynamic regular expressions

Ex: var regex = new RegExp(“fish|fowl”);

Note: If performance is an issue for our script, then we should try to use static expressions

whenever possible. If we don‟t know what we are going to be searching until runtime (for

instance, the pattern may depend on user input) then we create dynamic patterns

A regular expression pattern is composed of simple characters, such as /abc/, or a combination of

simple and special characters, such as /ab*c/ or /Chapter (\d+)\.\d*/.

Using Simple Patterns:

• Simple patterns are constructed of characters for which we want to find a direct match.

• For example, the pattern /abc/ matches character combinations in strings only when exactly the

characters 'abc' occur together and in that order.

• Such a match would succeed in the strings

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

"Hi, do you know your abc's?“

"The latest airplane designs evolved from slabcraft."

• In both cases the match is with the substring 'abc'.

• There is no match in the string "Grab crab" because it does not contain the substring 'abc'.

Using special characters:
• When the search for a match requires something more than a direct match, such as finding one

or more b's, or finding white space, the pattern includes special characters.

• For example, the pattern /ab*c/ matches any character combination in which a single 'a' is

followed by zero or more 'b's (* means 0 or more occurrences of the preceding item) and then

immediately followed by 'c'. In the string "cbbabbbbcdebc," the pattern matches the substring

'abbbbc'

Working with Regular Expressions

Regular expression patterns in java script must begin and end with forward slashes.

. ---Matches single character

\ ---identifies the next charcter as a literal value

^ ----Matches characters at begining of a string

$ ----Matches characters at the end of the string

() ----specifies required characters to include in pattern match

[] ----Specifies alternate characters allowed in a pattern match

[^] ---Specifies characters to exclude in a pattern match

~ ----identifies a possible range of characters to match

| ---Specifies alternate sets of characters to include

^ circumflex operator

Java script character class escape characters:

\w Alphanumeric character

\D Alphabetic characters

\d Numeric chacters

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

\S All pritable characters

\s white space characters

\W Any character that is not an alphanumeric character

\b Backspace character

Predefined character classes

Name EquilanetPattern Matches

\d [0-9] A digit

\D [^0-9] Not a digit

\w [A-Za-z_0-9] A word character(Alphanumeric)

\W [^A-Za-z_0-9] Not a word character

\s [\r\t\n\f] A white space character

\S [^\r\t\n\f] Not a White space character

