K L University
 Department of Computer Science and Engineering III B.Tech-Odd Semester AY 2017-18
 Theory of Computation(15-CS3109)

Section:S11

Instructor:K.Yellaswamy

Lecture Problems on DFA

1. Design a DFA, Language $\mathrm{L}=\{\mathrm{W} / \mathrm{W}$ contains ' 01 ' as a substring, $\Sigma=\{0,1\}\}$
2. Design a DFA, Language $L=\{w \mid w$ starts with 'ab', $\Sigma=\{a, b\}\}$
3. Design a DFA, Language $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ ends with ' 00 ',$\Sigma=\{0,1\}\}$
4. Construct DFA, $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ conatains even number of ' 0 's' and even number of ' 1 's,$\Sigma=\{0,1\}\}$
5. Construct DFA , $\mathrm{L}=\{\mathrm{w} \mid \mathrm{w}$ conatains even number of a's, $\Sigma=\{\mathrm{a}, \mathrm{b}\}\}$
6. Construct DFA, $L=\{w \mid w$ conatains odd number of $b ' s, \Sigma=\{a, b\}\}$
7. Construct DFA, $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ represent base 3 divisible by 4$\}$
8. Construct DFA, $\mathrm{L}=\{\mathrm{w} /|\mathrm{w}|<=4 \mathrm{w}=\{\mathrm{a}, \mathrm{b}\}\}$
9. Construct DFA, $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ contains b as a third symbol from right $\mathrm{w}=\{\mathrm{a}, \mathrm{b}\}\}$
10. Construct DFA, $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ contains a as a second symbol from left $\mathrm{w}=\{\mathrm{a}, \mathrm{b}\}\}$
11.Design a DFA which accepts set of strings that does not contain " 010 " as substring over an alphabet $\Sigma=\{0,1\}$.
12.Design a DFA which accepts set of strings that starts and ends with ' \mathbf{b} ' (same symbol) over an alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
11. $\mathrm{L}=\{\mathrm{w} /|\mathrm{w}|=3$ and w starts with 'a' $\}$ over an alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.

DFA TUTORIAL-CO-I

1. Design a DFA which accepts string 1100 only over an alphabet $\sum=\{0,1\}$.
2. $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ starts and ends with different symbol $\}$ over an alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$.
3. $\mathrm{L}=\{\mathrm{w} / \mathrm{w}$ contains 3 consecutive zero's $\}$ over an alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$.
4. $L=\left\{W / W\right.$ contains exactly 4 one's over an alphabet $\left.\sum=\{0,1\}\right\}$.
5. $L=\left\{\left\{a^{n}\right\} \cup\left\{b^{n}\right\} n \geq 1\right\}$ over an alphabet $\sum=\{a, b\}$.
6. $L=\left\{a^{m} b^{n} / m, n \geq 1\right\}$ over an alphabet $\sum=\{a, b\}$.
7. $L=\{w / w$ contains no of a's divisible by 2 and no of b's divisible by 3$\}$ over an alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$.
8. $. ~ L=\{w /|w|$ is even $\}$ over an alphabet $\sum=\{0,1\}$.
