
K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-1

Tomcat Web Server

Apache Tomcat Servlet/JSP container. Apache Tomcat version 6.0 implements the Servlet 2.5 and

JavaServer Pages 2.1 specifications from the Java Community Process, and includes many additional

features that make it a useful platform for developing and deploying web applications and web services.

These are some of the key tomcat directories:

 /bin - Startup, shutdown, and other scripts. The *.sh files (for Unix systems) are

functional duplicates of the *.bat files (for Windows systems). Since the Win32

command-line lacks certain functionality, there are some additional files in here.

 /conf - Configuration files and related DTDs. The most important file in here is

server.xml. It is the main configuration file for the container.

 /logs - Log files are here by default.

 /webapps - This is where your webapps go.

Installing Tomcat on Windows can be done easily using the Windows installer. Its interface and

functionality is similar to other wizard based installers, with only a few items of interest.

 Installation as a service: Tomcat will be installed as a Windows service no matter what

setting is selected. Using the checkbox on the component page sets the service as "auto"

startup, so that Tomcat is automatically started when Windows starts. For optimal

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

security, the service should be run as a separate user, with reduced permissions (see the

Windows Services administration tool and its documentation).

 Java location: The installer will provide a default JRE to use to run the service. The

installer uses the registry to determine the base path of a Java 5 or later JRE, including

the JRE installed as part of the full JDK. When running on a 64-bit operating system, the

installer will first look for a 64-bit JRE and only look for a 32-bit JRE if a 64-bit JRE is

not found. It is not mandatory to use the default JRE detected by the installer. Any

installed Java 5 or later JRE (32-bit or 64-bit) may be used.

 Tray icon: When Tomcat is run as a service, there will not be any tray icon present when

Tomcat is running. Note that when choosing to run Tomcat at the end of installation, the

tray icon will be used even if Tomcat was installed as a service.

Installation:

JDK:

Tomcat 6.0 was designed to run on J2SE 5.0.

Tomcat:

Binary downloads of the Tomcat server are available from http://tomcat.apache.org/download-60.cgi.
This manual assumes you are using the most recent release of Tomcat 6.

Web Application Directory Structure

To facilitate creation of a Web Application Archive file in the required format, it is convenient to

arrange the "executable" files of your web application (that is, the files that Tomcat actually uses

when executing your app) in the same organization as required by the WAR format itself. To do

this, you will end up with the following contents in your application's "document root" directory:

 *.html, *.jsp, etc. - The HTML and JSP pages, along with other files that must be visible

to the client browser (such as JavaScript, stylesheet files, and images) for your

application. In larger applications you may choose to divide these files into a subdirectory

hierarchy, but for smaller apps, it is generally much simpler to maintain only a single

directory for these files.

 /WEB-INF/web.xml - The Web Application Deployment Descriptor for your application.

This is an XML file describing the servlets and other components that make up your

application, along with any initialization parameters and container-managed security

constraints that you want the server to enforce for you. This file is discussed in more

detail in the following subsection.

 /WEB-INF/classes/ - This directory contains any Java class files (and associated

resources) required for your application, including both servlet and non-servlet classes,

that are not combined into JAR files. If your classes are organized into Java packages,

http://tomcat.apache.org/download-60.cgi

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

you must reflect this in the directory hierarchy under /WEB-INF/classes/. For example,

a Java class named com.mycompany.mypackage.MyServlet would need to be stored in a

file named /WEB-INF/classes/com/mycompany/mypackage/MyServlet.class.

 /WEB-INF/lib/ - This directory contains JAR files that contain Java class files (and

associated resources) required for your application, such as third party class libraries or

JDBC drivers.

Example:

Web Application Deployment Descriptor:

As mentioned above, the /WEB-INF/web.xml file contains the Web Application Deployment

Descriptor for your application. As the filename extension implies, this file is an XML document, and

defines everything about your application that a server needs to know (except the context path, which is

assigned by the system administrator when the application is deployed).

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example:

Web.xml

Deployment with Tomcat 6

In order to be executed, a web application must be deployed on a servlet container. This is true

even during development. We will describe using Tomcat 6 to provide the execution

environment. A web application can be deployed in Tomcat by one of the following approaches:

 Copy unpacked directory hierarchy into a subdirectory in directory

$CATALINA_BASE/webapps/. Tomcat will assign a context path to your application based

on the subdirectory name you choose. We will use this technique in the build.xml file

that we construct, because it is the quickest and easiest approach during development. Be

sure to restart Tomcat after installing or updating your application.

 Copy the web application archive file into directory $CATALINA_BASE/webapps/. When

Tomcat is started, it will automatically expand the web application archive file into its

unpacked form, and execute the application that way. This approach would typically be

used to install an additional application, provided by a third party vendor or by your

internal development staff, into an existing Tomcat installation. NOTE - If you use this

approach, and wish to update your application later, you must both replace the web

application archive file AND delete the expanded directory that Tomcat created, and then

restart Tomcat, in order to reflect your changes.

 Use the Tomcat 6 "Manager" web application to deploy and undeploy web applications.

Tomcat 6 includes a web application, deployed by default on context path /manager, that

allows you to deploy and undeploy applications on a running Tomcat server without

restarting it. See the administrator documentation (TODO: hyperlink) for more

information on using the Manager web application.

 Use "Manager" Ant Tasks In Your Build Script. Tomcat 6 includes a set of custom task

definitions for the Ant build tool that allow you to automate the execution of commands

to the "Manager" web application. These tasks are used in the Tomcat deployer.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 Use the Tomcat Deployer. Tomcat 6 includes a packaged tool bundling the Ant tasks, and

can be used to automatically precompile JSPs which are part of the web application

before deployment to the server.

Deploying your app on other servlet containers will be specific to each container, but all

containers compatible with the Servlet API Specification (version 2.2 or later) are required to

accept a web application archive file. Note that other containers are NOT required to accept an

unpacked directory structure (as Tomcat does), or to provide mechanisms for shared library files,

but these features are commonly available.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-2

Client Server Architecture

The web is based on a very basic client/server architecture that can be summarized as follows:

 A client (usually a Web browser) sends a request to a server (most of the time a web server like

Apache, Nginx, IIS, Tomcat, etc.), using the HTTP protocol.

 The server answers the request using the same protocol.

CERN=Charmed quarks stored at European organization for nuclear Research

MIME-Multipurpose Internet mail extensions

Protocols:

HTTP :Hypertext Transfer Protocol

FTP :File Transfer Protocol

TCP :Transmision Control Protocol

IP :Internet Protocol

UDP :User Datagram Protocol

Telnet

Difference between FTP and HTTP

FTP-Transfers files from server to client support several requests for connection

HTTP-support only one request for connection

The first web browser is Mosaic created by the National Center for Supercomputing Applications(NCSA)

http://httpd.apache.org/
http://nginx.com/
http://www.iis.net/
http://tomcat.apache.org/
https://developer.mozilla.org/en-US/docs/HTTP

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Web Applications and Web Sites

Early in the development of HTML,the designers created a mechanism to permit a user to invoke a

program on the web server.This mechanism was called the Common Gateway Interface(CGI).When a

website includes CGI Processing this is called a web application.

CGI Programs on the Web Server

Execution of CGI Programs

At runtime a CGI program is launched by the web server as a separate operating system(OS) shell.

The shell includes an os environment and process to excecute the code of the CGI program.which

resides within the servers file system.

Advantages of CGI Programs

1. A program can be written in varirty of languages although they are primarily written in Perl

2. A CGI Program with bugs docs not crash the web server

3. Programs are easy for a web designer to reference.when the script is written,the designer can

reference it in one line in a web page.

4. Because of CGI Programs execute in their own OS Shell,these programs do not have concurrency

conflicts with other HTTP requests executing the same CGI program.

5. All service providers support CGI Programs

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Disadvantages of CGI Programs

1. The response time of CGI prigrams is high because CGI programs execute in their own OS

Shell.The creation of OS shell is heavyweight activity for the OS

2. CGI is not Scalable.If the number of people accessing the web application increases from 50 to

5000.can not be adopted to handle the load.

3. The languages for CGI are not always secure or object-oriented.

4. The CGI script has to generate an HTML response,so the CGI code is mingled with HTML.This is

not good seperation of presentation and business logic.

5. Scripting languages are often platform-dependent.

Note: To overcome above disadvantage Servlets are introduced.

Java Servlets:

Sun Microsystems developed servlets as an advance over traditional CGI technology

Servlet can be described in many ways, depending on the context.

 Servlet is a technology i.e. used to create web application.

 Servlet is an API that provides many interfaces and classes including
documentations.

 Servlet is an interface that must be implemented for creating any servlet.

 Servlet is a class that extend the capabilities of the servers and respond to the
incoming request. It can respond to any type of requests.

 Servlet is a web component that is deployed on the server to create dynamic web
page.

Servlet Programs on the Web Server:

Unlike CGI programs, servlets run within component container architecture.This container is called web

container or servlet engine.

 The web container is a JVM that supplies an implementation of the Servlet API

 Servlet instances are components that are managed by the web container to respond to HTTP

requests.

Execution of Java Servlets

1. The basic processing steps for Java servlets are quite similar to the steps for CGI.However,the

servlet runs as a thread in the web container instead of in a separate OS process.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

2. When the number of requests for a servlet rises,no additional instances of the servlet or

operating system process are created.

3. Each request is processed concurrently using one Java thread per request.

Advantages of Java Servlets:

1. Each request is run in a separate thread, so servlet request processing is significantly faster than

traditional CGI Processing.

2. Servlets are Scalable.Many more requests can be excecuted because the web container uses a

thread rather than an operating system process,which is a limited system resource.

3. Servlets are robust and object oriented.

4. Servlets are platform independent

5. The web container provides additional services to the servlets,such as error handling and

security.

Disadvantages of Java Servlets:

1. Servlets often contain both business logic and presentation logic.

2. Servlets must handle concurrency issues

3. Mixing presentation and business logic means that when ever a webpage changes the servlets

must be rewritten,recompiled and redeployed.

Presentation Logic: is anything that controls how the application presents information to the user.

Business Logic:is anything that manipulates data to accomplish something,such as storing data.

Note:To overcome above servlet disadvantages Java Server Pages(JSP) are introduced.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-3

The Servlet Container

It provides runtime environment for JavaEE (j2ee) applications.

It performs many operations that are given below:

1. Life Cycle Management

2. Multithreaded support

3. Object Pooling

4. Security etc.

Server

It is a running program or software that provides services.

There are two types of servers:

1. Web Server

2. Application Server

Web Server

Web server contains only web or servlet container. It can be used for servlet, jsp, struts, jsf

etc. It can't be used for EJB.

Example of Web Servers are: Apache Tomcat and Resin.

Application Server

Application server contains Web and EJB containers. It can be used for servlet, jsp, struts,

jsf, ejb etc.

Example of Application Servers are:

1. JBoss Open-source server from JBoss community.

2. Glassfish provided by Sun Microsystem. Now acquired by Oracle.

3. Weblogic provided by Oracle. It more secured.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

4. Websphere provided by IBM.

Content Type

Content Type is also known as MIME (Multipurpose internet Mail Extension) Type. It is

a HTTP header that provides the description about what are you sending to the browser.

There are many content types:

 text/html

 text/plain

 application/msword

 application/vnd.ms-excel

 application/jar

 application/pdf

 application/octet-stream

 application/x-zip

 images/jpeg

 video/quicktime etc.

HTTP (Hyper Text Transfer Protocol)
1. Http is the protocol that allows web servers and browsers to exchange data over the

web.

2. It is a request response protocol.

3. Http uses reliable TCP connections bydefault on TCP port 80.

4. It is stateless means each request is considered as the new request. In other words,
server doesn't recognize the user bydefault.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Http Request Methods

Every request has a header that tells the status of the client. There are many request

methods. Get and Post requests are mostly used.

The http request methods are:

 GET

 POST

 HEAD

 PUT

 DELETE

 OPTIONS

 TRACE

HTTP

Request

Description

GET Asks to get the resource at the requested URL.

POST Asks the server to accept the body info attached. It is like GET request with extra info

sent with the request.

HEAD Asks for only the header part of whatever a GET would return. Just like GET but with

no body.

TRACE Asks for the loopback of the request message, for testing or troubleshooting.

PUT Says to put the enclosed info (the body) at the requested URL.

DELETE Says to delete the resource at the requested URL.

OPTIONS Asks for a list of the HTTP methods to which the thing at the request URL can respond

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

What is the difference between Get and Post?

There are many differences between the Get and Post request. Let's see these differences:

Anatomy of Get Request

As we know that data is sent in request header in case of get request. It is the default

request type. Let's see what informations are sent to the server.

HTTP request FORMAT:-

Initial request line ex:- ...GET /one.html HTTP/1.1

Header line 1

Header line 2

Header line n

blank line

request body (optional)

GET POST

1) In case of Get request, only limited amount of

data can be sent because data is sent in header.

In case of post request, large amount of

data can be sent because data is sent in

body.

2) Get request is not secured because data is

exposed in URL bar.

Post request is secured because data is not

exposed in URL bar.

3) Get request can be bookmarked Post request cannot be bookmarked

4) Get request is idempotent. It means second

request will be ignored until response of first

request is delivered.

Post request is non-idempotent

5) Get request is more efficient and used more

than Post

Post request is less efficient and used less

than get.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Format of Initial Request line:-

 GET one.html HTTP/1.1

 here GET : Request method

 one.html : Request URI

 HTTP/1.1 : protocol/version no. used by the browser(client)

Format of the Header line:-

 user-Agent: Mozilla/4.5

 here user-Agent : Header name

 Mozilla/4.5: Header value

Format of HTTP RESPONSE:-

 Initial Response Line

 Header line 1

 Header line n

 blank line

 Response body

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 (optional)

Format of Initial response line:-

 HTTP/1.0 200 OK

 Here HTTP/1.0 : protocol/version no used by the browser.

 200 : status code

 OK : status message

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Anatomy of Post Request

As we know, in case of post request original data is sent in message body. Let's see how

informations are passed to the server in case of post request.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Servlet API

The javax.servlet and javax.servlet.http packages represent interfaces and classes

for servlet api.

The javax.servlet package contains many interfaces and classes that are used by

the servlet or web container. These are not specific to any protocol.

The javax.servlet.http package contains interfaces and classes that are

responsible for http requests only.

Let's see what are the interfaces of javax.servlet package.

Interfaces in javax.servlet package

There are many interfaces in javax.servlet package. They are as follows:

1. Servlet

2. ServletRequest

3. ServletResponse

4. RequestDispatcher

5. ServletConfig

6. ServletContext

7. SingleThreadModel

8. Filter

9. FilterConfig

10.FilterChain

11.ServletRequestListener

12.ServletRequestAttributeListener

13.ServletContextListener

14.ServletContextAttributeListener

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Classes in javax.servlet package

There are many classes in javax.servlet package. They are as follows:

1. GenericServlet

2. ServletInputStream

3. ServletOutputStream

4. ServletRequestWrapper

5. ServletResponseWrapper

6. ServletRequestEvent

7. ServletContextEvent

8. ServletRequestAttributeEvent

9. ServletContextAttributeEvent

10.ServletException

11.UnavailableException

Interfaces in javax.servlet.http package

There are many interfaces in javax.servlet.http package. They are as follows:

1. HttpServletRequest

2. HttpServletResponse

3. HttpSession

4. HttpSessionListener

5. HttpSessionAttributeListener

6. HttpSessionBindingListener

7. HttpSessionActivationListener

8. HttpSessionContext (deprecated now)

Classes in javax.servlet.http package

There are many classes in javax.servlet.http package. They are as follows:

1. HttpServlet

2. Cookie

3. HttpServletRequestWrapper

4. HttpServletResponseWrapper

5. HttpSessionEvent

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

6. HttpSessionBindingEvent

7. HttpUtils (deprecated now)

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-4

Servlet LifeCycle:

A servlet follows a certain life cycle. The servlet life cycle is managed by the servlet

container. The life cycle contains the following steps:

1. Load Servlet Class.

2. Create Instance of Servlet.
3. Call the servlets init() method.

4. Call the servlets service() method.

5. Call the servlets destroy() method.

Step 1, 2 and 3 are executed only once, when the servlet is initially loaded. By
default the servlet is not loaded until the first request is received for it. You can

force the container to load the servlet when the container starts up though.

See web.xml Servlet Configuration for more details about that.

Step 4 is executed multiple times - once for every HTTP request to the servlet.

Step 5 is executed when the servlet container unloads the servlet.

Each step is described in more detail below:

The Java Servlet life cycle

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Load Servlet Class

Before a servlet can be invoked the servlet container must first load its class

definition. This is done just like any other class is loaded.

Create Instance of Servlet

When the servlet class is loaded, the servlet container creates an instance of the

servlet.

Typically, only a single isntance of the servlet is created, and concurrent requests

to the servlet are executed on the same servlet instance. This is really up to the

servlet container to decide, though. But typically, there is just one instance.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Call the Servlets init() Method

When a servlet instance is created, its init() method is invoked. The init() method

allows a servlet to initialize itself before the first request is processed.

You can specify init parameters to the servlet in the web.xml file. See web.xml

Servlet Configuration for more details.

Call the Servlets service() Method

For every request received to the servlet, the servlets service() method is called.

For HttpServletsubclasses, one of the doGet(), doPost() etc. methods are typically

called.

As long as the servlet is active in the servlet container, the service() method can be

called. Thus, this step in the life cycle can be executed multiple times.

Call the Servlets destroy() Method

When a servlet is unloaded by the servlet container, its destroy() method is called.

This step is only executed once, since a servlet is only unloaded once.

A servlet is unloaded by the container if the container shuts down, or if the

container reloads the whole web application at runtime.

Steps to create a servlet example
1. Steps to create the servlet using Tomcat server

1. Create a directory structure

2. Create a Servlet

3. Compile the Servlet

4. Create a deployment descriptor

5. Start the server and deploy the application

There are given 6 steps to create a servlet example. These steps are required for

all the servers.

The servlet example can be created by three ways:

http://tutorials.jenkov.com/java-servlets/web-xml.html#initParams
http://tutorials.jenkov.com/java-servlets/web-xml.html#initParams
http://tutorials.jenkov.com/java-servlets/web-xml.html#initParams
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server#servletstep1
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server#servletstep2
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server#servletstep3
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server#servletstep4
http://www.javatpoint.com/steps-to-create-a-servlet-using-tomcat-server#servletstep5

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

1. By implementing Servlet interface,

2. By inheriting GenericServlet class, (or)

3. By inheriting HttpServlet class

The mostly used approach is by extending HttpServlet because it provides http

request specific method such as doGet(), doPost(), doHead() etc.

Here, we are going to use apache tomcat server in this example. The steps are

as follows:

1. Create a directory structure

2. Create a Servlet

3. Compile the Servlet

4. Create a deployment descriptor

5. Start the server and deploy the project

6. Access the servlet

1)Create a directory structures

The directory structure defines that where to put the different types of files so

that web container may get the information and respond to the client.

The Sun Microsystem defines a unique standard to be followed by all the server

vendors. Let's see the directory structure that must be followed to create the

servlet.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

2) Create a Servlet
There are three ways to create the servlet.

1. By implementing the Servlet interface

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

2. By inheriting the GenericServlet class

3. By inheriting the HttpServlet class

The HttpServlet class is widely used to create the servlet because it provides

methods to handle http requests such as doGet(), doPost, doHead() etc.

In this example we are going to create a servlet that extends the HttpServlet

class. In this example, we are inheriting the HttpServlet class and providing the

implementation of the doGet() method. Notice that get request is the default

request.

Servlethtml.java

package com.cmrcet.servletexample;

import javax.servlet.http.*;

import java.io.*;

import javax.servlet.*;

public class servlethtml extends HttpServlet

{

public void doGet(HttpServletRequest req,HttpServletResponse res)throws

ServletException,IOException

{

 res.setContentType("text/html");

 System.out.println("this is displayed in Tomcat Server");

PrintWriter out=res.getWriter();

out.println("<html><body>");

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

out.println("<center>");

out.println("<i>Welcome to CMR College of Egineering & Technology</i>");

out.println("WT LAB");

out.println("</center>");

out.println("</body></html>");

}

}

3)Compile the servlet

For compiling the Servlet, jar file is required to be loaded. Different Servers provide

different jar files:

Jar file Server

1) servlet-api.jar Apache Tomcat

2) weblogic.jar Weblogic

3) javaee.jar Glassfish

4) javaee.jar JBoss

Two ways to load the jar file
1. set classpath

2. paste the jar file in JRE/lib/ext folder

Put the java file in any folder. After compiling the java file, paste the class file of

servlet in WEB-INF/classes directory.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

E:\IIICSEA\cmrwebapp1\WEB-INF\classes>set classpath=E:\servlet-api.jar;.;

E:\IIICSEA\cmrwebapp1\WEB-INF\classes>javac -d . *.java

E:\IIICSEA\cmrwebapp1\WEB-INF\classes>

E:\IIICSEA\cmrwebapp1\WEB-INF\classes>set classpath=E:\servlet-api.jar;.;

E:\IIICSEA\cmrwebapp1\WEB-INF\classes>javac -d . *.java

E:\IIICSEA\cmrwebapp1>tree/f

Folder PATH listing

Volume serial number is 3643-98F2

E:.

│ Home.html

│

└───WEB-INF

 │ web.xml

 │

 ├───classes

 │ │ servlethtml.java

 │ │

 │ └───com

 │ └───cmrcet

 │ └───servletexample

 │ servlethtml.class

 │

 └───lib

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

4)Create the deployment descriptor (web.xml
file)

The deployment descriptor is an xml file, from which Web Container gets the

information about the servet to be invoked.

The web container uses the Parser to get the information from the web.xml file.

There are many xml parsers such as SAX, DOM and Pull.

There are many elements in the web.xml file. Here is given some necessary

elements to run the simple servlet program.

Web.xml

<web-app>

<servlet>

<servlet-name>servlethtml</servlet-name>

<servlet-class>com.cmrcet.servletexample.servlethtml</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>servlethtml</servlet-name>

<url-pattern>/getHomeHtml</url-pattern>

</servlet-mapping>

</web-app>

5)Start the Server and deploy the project

To start Apache Tomcat server, double click on the startup.bat file under apache-

tomcat/bin directory.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

One Time Configuration for Apache Tomcat
Server

You need to perform 2 tasks:

1. set JAVA_HOME or JRE_HOME in environment variable (It is required to start
server).

2. Change the port number of tomcat (optional). It is required if another server

is running on same port (8080).

1) How to set JAVA_HOME in environment variable?

To start Apache Tomcat server JAVA_HOME and JRE_HOME must be set in

Environment variables.

Go to My Computer properties -> Click on advanced tab then environment variables

-> Click on the new tab of user variable -> Write JAVA_HOME in variable name and

paste the path of jdk folder in variable value -> ok -> ok -> ok.

Go to My Computer properties:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Click on advanced system settings tab then environment variables:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Click on Environmental Variables:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

After setting the JAVA_HOME double click on the startup.bat file in apache

tomcat/bin.

Note: There are two types of tomcat available:

1. Apache tomcat that needs to extract only (no need to install)

2. Apache tomcat that needs to install

It is the example of apache tomcat that needs to extract only.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

But there are several ways to deploy the project. They are as follows:

 By copying the context(project) folder into the webapps directory

 By copying the war folder into the webapps directory

 By selecting the folder path from the server

 By selecting the war file from the server

6) How to access the servlet

Open Browser and specify the following URL:

http://localhost:9090/cmrwebapp1/Home.html

http://localhost:9090/cmrwebapp1/Home.html

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

LifeCycleServlet Example:

package com.cmrcet.lifecycleex;

import javax.servlet.*;

import java.io.*;

public class LifeCycle implements Servlet

{

private ServletConfig myconfig;

public void init(ServletConfig sc)

{

this.myconfig=sc;

System.out.println("In Init() Method");

}

public void service(ServletRequest myreq,ServletResponse myres)throws

ServletException,IOException

{

System.out.println("In service() Method");

PrintWriter out=myres.getWriter();

out.println("Hi,I am from Tomcat Server");

}

public void destroy()

{

System.out.println("In destroy() Method");

}

public String getServletInfo()

{

return "Developed by CMRCET";

}

public ServletConfig getServletConfig()

{

return myconfig;

}

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Web.xml

<web-app>

<servlet>

<servlet-name>LifeCycle</servlet-name>

<servlet-class>com.cmrcet.lifecycleex.LifeCycle</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>LifeCycle</servlet-name>

<url-pattern>/lifecycle</url-pattern>

</servlet-mapping>

</web-app>

Lifecycle.html

<!doctype html>

<html lang="en">

 <head>

 <title>Life Cycle Servlet</title>

 </head>

 <body>

 <form action="lifecycle">

 <input type="submit" value="Invoke LifeCycle Servlet"/>

 </form>

 </body>

</html>

Note:Arrrane in Directory structure and compile and deploy in Tomcat server and

Test

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-5

ServletContext and ServletConfig:

ServletContext and ServletConfig are the interfaces provided by javasoft as part of servlet-api.It is the

responsibility of the web container vendors to provide the classes implementing the ServletConfig

interface and the ServletContext interface.

1. We can run multiple web applications as part of a web container.

2. While starting a web application, Web container is responsible for creating a ServletContext

object.

3. Web Container is responsible for removing/destroying the ServletContext object while stopping

the web application.

4. There will be only one ServletContext object for every web application.The ServletContext

object is also known as an application object.

5. There can be multiple servlets in a web application.

6. Web Container is responsible for maintaining a ServletConfig object for every servlet(there can

be multiple ServletConfig objects in a web application).

7. ServletConfig can be used to get the information about the Initialization parameters.

8. ServletContext object can be used to get the information about the Context Parameters.

9. The Context parameters can be accessed by every Servlet that is the part of web application

and the initialization parameters can be accessed only by the servlet for which the parameter is

provided.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

ServletContext Interface
1. ServletContext Interface

2. Usage of ServletContext Interface

3. Methods of ServletContext interface

4. How to get the object of ServletContext

5. Syntax to provide the initialization parameter in Context scope

6. Example of ServletContext to get initialization parameter

7. Example of ServletContext to get all the initialization parameter

An object of ServletContext is created by the web container at time of deploying the project.

This object can be used to get configuration information from web.xml file. There is only one

ServletContext object per web application.

If any information is shared to many servlet, it is better to provide it from the web.xml file

using the <context-param> element.

Advantage of ServletContext

Easy to maintain if any information is shared to all the servlet, it is better to make it

available for all the servlet. We provide this information from the web.xml file, so if the

information is changed, we don't need to modify the servlet. Thus it removes maintenance

problem.

Usage of ServletContext Interface

There can be a lot of usage of ServletContext object. Some of them are as follows:

1. The object of ServletContext provides an interface between the container and

servlet.

2. The ServletContext object can be used to get configuration information from the
web.xml file.

3. The ServletContext object can be used to set, get or remove attribute from the
web.xml file.

4. The ServletContext object can be used to provide inter-application communication.

http://www.javatpoint.com/servletcontext
http://www.javatpoint.com/servletcontext#contextusage
http://www.javatpoint.com/servletcontext#contextmethods
http://www.javatpoint.com/servletcontext#contextobject
http://www.javatpoint.com/servletcontext#contextsyn
http://www.javatpoint.com/servletcontext#contextex1
http://www.javatpoint.com/servletcontext#contextex2

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Commonly used methods of ServletContext interface

There is given some commonly used methods of ServletContext interface.

1. public String getInitParameter(String name):Returns the parameter value
for the specified parameter name.

2. public Enumeration getInitParameterNames():Returns the names of the
context's initialization parameters.

3. public void setAttribute(String name,Object object):sets the given object in
the application scope.

4. public Object getAttribute(String name):Returns the attribute for the
specified name.

5. public Enumeration getInitParameterNames():Returns the names of the
context's initialization parameters as an Enumeration of String objects.

6. public void removeAttribute(String name):Removes the attribute with the
given name from the servlet context.

How to get the object of ServletContext interface
1. getServletContext() method of ServletConfig interface returns the object of

ServletContext.

2. getServletContext() method of GenericServlet class returns the object of
ServletContext.

Syntax of getServletContext() method
1. public ServletContext getServletContext()

Example of getServletContext() method
//We can get the ServletContext object from ServletConfig object
ServletContext application=getServletConfig().getServletContext();

//Another convenient way to get the ServletContext object
ServletContext application=getServletContext();

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Syntax to provide the initialization parameter in Context scope

The context-param element, subelement of web-app, is used to define the initialization

parameter in the application scope. The param-name and param-value are the sub-

elements of the context-param. The param-name element defines parameter name and

and param-value defines its value.

<web-app>

 <context-param>
 <param-name>parametername</param-name>
 <param-value>parametervalue</param-value>
 </context-param>

</web-app>

Example of ServletContext to get the initialization

parameter

In this example, we are getting the initialization parameter from the web.xml file

and printing the value of the initialization parameter. Notice that the object of

ServletContext represents the application scope. So if we change the value of

the parameter from the web.xml file, all the servlet classes will get the changed

value. So we don't need to modify the servlet. So it is better to have the

common information for most of the servlets in the web.xml file by context-

param element.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Let's see the simple example:

SCExample.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

 public class SCExample extends HttpServlet

{

public void doGet(HttpServletRequest req,HttpServletResponse res)

throws ServletException,IOException

{

res.setContentType("text/html");

PrintWriter pw=res.getWriter();

//creating ServletContext object

ServletContext mycontext=getServletContext();

//Getting the value of the initialization parameter and printing it

String driverName=mycontext.getInitParameter("DatabaseDriver");

pw.println("Driver name is="+driverName);

pw.close();

}

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Web.xml

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Write Servlet program for Login and Registration to Connect to Database using ServletContext:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Login.html

<!--Login.html-->

<html> <body>

<center><h1>CMR College of Engineering & Technology</h1></center>

<table border="1" width="100%" height="100%">

<tr>

 <td width="15%" valign="top" align="center">

Login

Register

 </td>

 <td valign="top" align="center">

 <form action="login"><table>

 <tr>

 <td colspan="2" align="center">Login Page</td>

 </tr>

 <tr>

 <td colspan="2" align="center"> </td>

 </tr>

 <tr>

 <td>User Name</td>

 <td><input type="text" name="uname"/></td>

 </tr>

 <tr>

 <td>Password</td>

 <td><input type="password" name="pass"/></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2" align="center"><input type="submit" value="LogIN"/></td>

 </tr>

 </table></form>

 </td>

</tr>

</table>

</body></html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Register.html

<!--Register.html-->

<html> <body>

<center><h1>CMR COLLEGE OF ENGINEERING & TECHNOLOGY</h1></center>

<table border="1" width="100%" height="100%">

<tr>

 <td width="15%" valign="top" align="center">

Login

Register

 </td>

 <td valign="top" align="center">

 <form action="register"><table>

 <tr>

 <td colspan="2" align="center">Registration Page</td>

 </tr>

 <tr>

 <td colspan="2" align="center"> </td>

 </tr>

 <tr>

 <td>User Name</td>

 <td><input type="text" name="uname"/></td>

 </tr>

 <tr>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 <td>Password</td>

 <td><input type="password" name="pass"/></td>

 </tr>

 <tr>

 <td>Re-Password</td>

 <td><input type="password" name="repass"/></td>

 </tr>

 <tr>

 <td>Address</td>

 <td><input type="text" name="addr"/></td>

 </tr>

 <tr>

 <td>Phone Number</td>

 <td><input type="text" name="phno"/></td>

 </tr>

 <tr>

 <td>Email ID</td>

 <td><input type="text" name="email"/></td>

 </tr>

 <tr>

 <td> </td>

 <td> </td>

 </tr>

 <tr>

 <td colspan="2" align="center"><input type="submit" value="Register"/></td>

 </tr>

 </table></form>

 </td>

</tr>

</table>

</body></html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Web.xml

<?xml version="1.0"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-

app_2_3.dtd">

<web-app>

 <context-param>

 <param-name>driverClassName</param-name>

 <param-value>oracle.jdbc.driver.OracleDriver</param-value>

 </context-param>

 <context-param>

 <param-name>url</param-name>

 <param-value>

 jdbc:oracle:thin:@localhost:1521:xe

 </param-value>

 </context-param>

 <servlet>

 <servlet-name>ls</servlet-name>

 <servlet-class>com.yellaswamy.servlets.LoginServlet</servlet-class>

 <init-param>

 <param-name>dbuser</param-name>

 <param-value>yellaswamy</param-value>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 </init-param>

 <init-param>

 <param-name>dbpass</param-name>

 <param-value>kandula</param-value>

 </init-param>

 <init-param>

 <param-name>sqlstatement</param-name>

 <param-value>

 select * from userdetails where uname=? and pass=?

 </param-value>

 </init-param>

 </servlet>

 <servlet>

 <servlet-name>rs</servlet-name>

 <servlet-class>

 com.yellaswamy.servlets.RegistrationServlet

 </servlet-class>

 <init-param>

 <param-name>dbuser</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>dbpass</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>sqlstatement</param-name>

 <param-value>

 insert into userdetails values(?,?,?,?,?)

 </param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>ls</servlet-name>

 <url-pattern>/login</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>rs</servlet-name>

 <url-pattern>/register</url-pattern>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>Home.html</welcome-file>

 </welcome-file-list>

</web-app>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

UNIT-V

Lecture-6

Session Tracking in Servlets

1. Session Tracking

2. Session Tracking Techniques

Session simply means a particular interval of time.

Session Tracking is a way to maintain state (data) of an user. It is also known

as session management in servlet.

Http protocol is a stateless so we need to maintain state using session tracking

techniques. Each time user requests to the server, server treats the request as the

new request. So we need to maintain the state of an user to recognize to particular

user.

HTTP is stateless that means each request is considered as the new request. It is

shown in the figure given below:

Why use Session Tracking?

To recognize the user It is used to recognize the particular user.

http://www.javatpoint.com/session-tracking-in-servlets#session1
http://www.javatpoint.com/session-tracking-in-servlets#session1tech

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Session Tracking Techniques

There are four techniques used in Session tracking:

1. Cookies

2. Hidden Form Field

3. URL Rewriting

4. HttpSession

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple

client requests.

A cookie has a name, a single value, and optional attributes such as a comment,

path and domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we

add cookie with response from the servlet. So cookie is stored in the cache of the

browser. After that if request is sent by the user, cookie is added with request by

default. Thus, we recognize the user as the old user.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Types of Cookie

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the

browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the

browser. It is removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

Cookie class

javax.servlet.http.Cookie class provides the functionality of using cookies. It

provides a lot of useful methods for cookies.

Constructor of Cookie class

Constructor Description

Cookie() constructs a cookie.

Cookie(String name, String

value)

constructs a cookie with a specified name and

value.

Useful Methods of Cookie class

There are given some commonly used methods of the Cookie class.

Method Description

public void setMaxAge(int

expiry)

Sets the maximum age of the cookie in seconds.

public String getName() Returns the name of the cookie. The name cannot be

changed after creation.

public String getValue() Returns the value of the cookie.

public void setName(String

name)

changes the name of the cookie.

public void setValue(String

value)

changes the value of the cookie.

Other methods required for using Cookies

For adding cookie or getting the value from the cookie, we need some methods

provided by other interfaces. They are:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

1. public void addCookie(Cookie ck):method of HttpServletResponse

interface is used to add cookie in response object.

2. public Cookie[] getCookies():method of HttpServletRequest interface

is used to return all the cookies from the browser.

How to create Cookie?

Let's see the simple code to create cookie.

Cookie ck=new Cookie("user","cmrcet");//creating cookie object
response.addCookie(ck);//adding cookie in the response

How to delete Cookie?

Let's see the simple code to delete cookie. It is mainly used to logout or signout the

user.

Cookie ck=new Cookie("user","");//deleting value of cookie

ck.setMaxAge(0);//changing the maximum age to 0 seconds

response.addCookie(ck);//adding cookie in the response

How to get Cookies?

Let's see the simple code to get all the cookies.

Cookie ck[]=request.getCookies();
for(int i=0;i<ck.length;i++){

 out.print("
"+ck[i].getName()+" "+ck[i].getValue());//printing name and value of

 cookie

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Servlet Login and Logout Example using
Cookies

A cookie is a kind of information that is stored at client side.

In the previous page, we learned a lot about cookie e.g. how to create cookie, how

to delete cookie, how to get cookie etc.

Here, we are going to create a login and logout example using servlet cookies.

In this example, we are creating 3 links: login, logout and profile. User can't go to

profile page until he/she is logged in. If user is logged out, he need to login again to

visit profile.

In this application, we have created following files.

1. index.html

2. link.html

3. login.html

4. LoginServlet.java

5. LogoutServlet.java

6. ProfileServlet.java

7. web.xml

index.html

<!DOCTYPE html>

<html>

<head>

<title>Servlet Login Example</title>

</head>

<body>

<h1>Welcome to Login Application by Cookie</h1>

Login|

Logout|

Profile

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

</body>

</html>

Link.html

<!doctype html>

<html lang="en">

 <head>

 <title>Links</title>

 </head>

 <body>

 Login |

Logout |

Profile

<hr>

 </body>

</html>

Login.html

<!doctype html>

<html lang="en">

 <head>

 <title>Login</title>

 </head>

 <body>

 <form action="LoginServlet" method="post">

Name:<input type="text" name="name">

Password:<input type="password" name="password">

<input type="submit" value="login">

</form>

 </body>

</html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

//LoginServlet.java

package yellaswamy;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LoginServlet extends HttpServlet {

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 String name=request.getParameter("name");

 String password=request.getParameter("password");

 if(password.equals("admin123")){

 out.print("You are successfully logged in!");

 out.print("
Welcome, "+name);

 Cookie ck=new Cookie("name",name);

 response.addCookie(ck);

 }else{

 out.print("sorry, username or password error!");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

// LogoutServlet.java

package yellaswamy;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class LogoutServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 Cookie ck=new Cookie("name","");

 ck.setMaxAge(0);

 response.addCookie(ck);

 out.print("you are successfully logged out!");

 }

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

// ProfileServlet.java

package yellaswamy;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.Cookie;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class ProfileServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out=response.getWriter();

 request.getRequestDispatcher("link.html").include(request, response);

 Cookie ck[]=request.getCookies();

 if(ck!=null){

 String name=ck[0].getValue();

 if(!name.equals("")||name!=null){

 out.print("Welcome to Profile");

 out.print("
Welcome, "+name);

 }

 }else{

 out.print("Please login first");

 request.getRequestDispatcher("login.html").include(request, response);

 }

 out.close();

 }

}

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

 <servlet>

 <description></description>

 <display-name>LoginServlet</display-name>

 <servlet-name>LoginServlet</servlet-name>

 <servlet-class>yellaswamy.LoginServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LoginServlet</servlet-name>

 <url-pattern>/LoginServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>ProfileServlet</display-name>

 <servlet-name>ProfileServlet</servlet-name>

 <servlet-class>yellaswamy.ProfileServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>ProfileServlet</servlet-name>

 <url-pattern>/ProfileServlet</url-pattern>

 </servlet-mapping>

 <servlet>

 <description></description>

 <display-name>LogoutServlet</display-name>

 <servlet-name>LogoutServlet</servlet-name>

 <servlet-class>yellaswamy.LogoutServlet</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>LogoutServlet</servlet-name>

 <url-pattern>/LogoutServlet</url-pattern>

 </servlet-mapping>

</web-app>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Directory Structure:

Output:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Username=yellaswamy

Password=admin123

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

2) Hidden Form Field
1. Hidden Form Field

2. Example of Hidden Form Field

In case of Hidden Form Field a hidden (invisible) textfield is used for

maintaining the state of an user.

In such case, we store the information in the hidden field and get it from another

servlet. This approach is better if we have to submit form in all the pages and we

don't want to depend on the browser.

Let's see the code to store value in hidden field.

1. <input type="hidden" name="uname" value="Vimal Jaiswal">

Here, uname is the hidden field name and Vimal Jaiswal is the hidden field value.

Real application of hidden form field

It is widely used in comment form of a website. In such case, we store page id or

page name in the hidden field so that each page can be uniquely identified.

Advantage of Hidden Form Field
1. It will always work whether cookie is disabled or not.

Disadvantage of Hidden Form Field:
1. It is maintained at server side.

2. Extra form submission is required on each pages.

3. Only textual information can be used.

http://www.javatpoint.com/hidden-form-field-in-session-tracking
http://www.javatpoint.com/hidden-form-field-in-session-tracking#session2ex

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example of using Hidden Form Field

In this example, we are storing the name of the user in a hidden textfield and

getting that value from another servlet.

3)URL Rewriting
1. URL Rewriting

2. Advantage of URL Rewriting

3. Disadvantage of URL Rewriting

4. Example of URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or

the next resource. We can send parameter name/value pairs using the following

format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value

pair is separated from another parameter using the ampersand(&). When the user

clicks the hyperlink, the parameter name/value pairs will be passed to the server.

From a Servlet, we can use getParameter() method to obtain a parameter value.

http://www.javatpoint.com/url-rewriting-in-session-tracking
http://www.javatpoint.com/url-rewriting-in-session-tracking#urladv
http://www.javatpoint.com/url-rewriting-in-session-tracking#urldisadv
http://www.javatpoint.com/url-rewriting-in-session-tracking#urlex

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Advantage of URL Rewriting
1. It will always work whether cookie is disabled or not (browser independent).

2. Extra form submission is not required on each pages.

Disadvantage of URL Rewriting
1. It will work only with links.

2. It can send Only textual information.

Example of using URL Rewriting

In this example, we are maintaning the state of the user using link. For this

purpose, we are appending the name of the user in the query string and getting the

value from the query string in another page.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

4) HttpSession interface
1. HttpSession interface

2. How to get the HttpSession object

3. Commonly used methods of HttpSession interface

4. Example of using HttpSession

In such case, container creates a session id for each user.The container uses this id

to identify the particular user.An object of HttpSession can be used to perform two

tasks:

1. bind objects

2. view and manipulate information about a session, such as the session

identifier, creation time, and last accessed time.

How to get the HttpSession object ?

The HttpServletRequest interface provides two methods to get the object of

HttpSession:

1. public HttpSession getSession():Returns the current session associated

with this request, or if the request does not have a session, creates one.

2. public HttpSession getSession(boolean create):Returns the current
HttpSession associated with this request or, if there is no current session and

create is true, returns a new session.

http://www.javatpoint.com/http-session-in-session-tracking
http://www.javatpoint.com/http-session-in-session-tracking#httpsessionhow
http://www.javatpoint.com/http-session-in-session-tracking#httpsessionmethod
http://www.javatpoint.com/http-session-in-session-tracking#httpsessionex

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Commonly used methods of HttpSession interface
1. public String getId():Returns a string containing the unique identifier

value.

2. public long getCreationTime():Returns the time when this session was
created, measured in milliseconds since midnight January 1, 1970 GMT.

3. public long getLastAccessedTime():Returns the last time the client sent a
request associated with this session, as the number of milliseconds since

midnight January 1, 1970 GMT.

4. public void invalidate():Invalidates this session then unbinds any objects

bound to it.

Example of using HttpSession

In this example, we are setting the attribute in the session scope in one servlet and

getting that value from the session scope in another servlet. To set the attribute in

the session scope, we have used the setAttribute() method of HttpSession interface

and to get the attribute, we have used the getAttribute method.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Lecture-7

RequestDispatcher in Servlet

1. RequestDispatcher Interface

2. Methods of RequestDispatcher interface

1. forward method

2. include method

3. How to get the object of RequestDispatcher

4. Example of RequestDispatcher interface

The RequestDispacher interface provides the facility of dispatching the request to

another resource it may be html, servlet or jsp.This interface can also be used to

include the content of another resource also. It is one of the way of servlet

collaboration.

There are two methods defined in the RequestDispatcher interface.

Methods of RequestDispatcher interface

The RequestDispatcher interface provides two methods. They are:

1. public void forward(ServletRequest request,ServletResponse
response)throws ServletException,java.io.IOException:Forwards a request
from a servlet to another resource (servlet, JSP file, or HTML file) on the server.

2. public void include(ServletRequest request,ServletResponse

response)throws ServletException,java.io.IOException:Includes the
content of a resource (servlet, JSP page, or HTML file) in the response.

http://www.javatpoint.com/requestdispatcher-in-servlet
http://www.javatpoint.com/requestdispatcher-in-servlet#rdmethod
http://www.javatpoint.com/requestdispatcher-in-servlet#rdforward
http://www.javatpoint.com/requestdispatcher-in-servlet#rdinclude
http://www.javatpoint.com/requestdispatcher-in-servlet#rdhow
http://www.javatpoint.com/requestdispatcher-in-servlet#rdex

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

As you see in the above figure, response of second servlet is sent to the client.

Response of the first servlet is not displayed to the user.

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

As you can see in the above figure, response of second servlet is included in the

response of the first servlet that is being sent to the client.

How to get the object of RequestDispatcher

The getRequestDispatcher() method of ServletRequest interface returns the object of

RequestDispatcher. Syntax:

Syntax of getRequestDispatcher method

public RequestDispatcher getRequestDispatcher(String resource);

Example of using getRequestDispatcher method

RequestDispatcher rd=request.getRequestDispatcher("servlet2");
//servlet2 is the url-pattern of the second servlet

rd.forward(request, response);//method may be include or forward

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Example of RequestDispatcher interface

In this example, we are validating the password entered by the user. If password is

servlet, it will forward the request to the WelcomeServlet, otherwise will show an error

message: sorry username or password error!. In this program, we are cheking for

hardcoded information. But you can check it to the database also that we will see in the

development chapter. In this example, we have created following files:

 index.html file: for getting input from the user.

 Login.java file: a servlet class for processing the response. If password is
servet, it will forward the request to the welcome servlet.

 WelcomeServlet.java file: a servlet class for displaying the welcome message.

 web.xml file: a deployment descriptor file that contains the information about
the servlet.

index.html
<form action="servlet1" method="post">

Name:<input type="text" name="userName"/>

Password:<input type="password" name="userPass"/>

<input type="submit" value="login"/>
</form>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Login.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Login extends HttpServlet {

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");
 String p=request.getParameter("userPass");

 if(p.equals("servlet"){

 RequestDispatcher rd=request.getRequestDispatcher("servlet2");
 rd.forward(request, response);
 }
 else{
 out.print("Sorry UserName or Password Error!");
 RequestDispatcher rd=request.getRequestDispatcher("/index.html");

 rd.include(request, response);

 }
 }

}

WelcomeServlet.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WelcomeServlet extends HttpServlet {

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 String n=request.getParameter("userName");
 out.print("Welcome "+n);
 }

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

}

web.xml

<web-app>
 <servlet>
 <servlet-name>Login</servlet-name>
 <servlet-class>Login</servlet-class>
 </servlet>
 <servlet>

 <servlet-name>WelcomeServlet</servlet-name>
 <servlet-class>WelcomeServlet</servlet-class>
 </servlet>

 <servlet-mapping>

 <servlet-name>Login</servlet-name>
 <url-pattern>/servlet1</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>WelcomeServlet</servlet-name>
 <url-pattern>/servlet2</url-pattern>

 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
</web-app>

SendRedirect in servlet

1. sendRedirect method

2. Syntax of sendRedirect() method

3. Example of RequestDispatcher interface

The sendRedirect() method of HttpServletResponse interface can be used to

redirect response to another resource, it may be servlet, jsp or html file.

It accepts relative as well as absolute URL.

It works at client side because it uses the url bar of the browser to make another

request. So, it can work inside and outside the server.

http://www.javatpoint.com/sendRedirect()-method
http://www.javatpoint.com/sendRedirect()-method#redirectsyn
http://www.javatpoint.com/sendRedirect()-method#redirectex

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Difference between forward() and sendRedirect()
method

There are many differences between the forward() method of RequestDispatcher and

sendRedirect() method of HttpServletResponse interface. They are given below:

forward() method sendRedirect() method

The forward() method works at server

side.

The sendRedirect() method works at

client side.

It sends the same request and response

objects to another servlet.

It always sends a new request.

It can work within the server only. It can be used within and outside the

server.

Example:

request.getRequestDispacher("servlet2").

forward(request,response);

Example:

response.sendRedirect("servlet2");

Syntax of sendRedirect() method

public void sendRedirect(String URL)throws IOException;

Example of sendRedirect() method

response.sendRedirect("http://www.cmrcet.org");

Full example of sendRedirect method in servlet

In this example, we are redirecting the request to the google server. Notice that

sendRedirect method works at client side, that is why we can our request to

anywhere. We can send our request within and outside the server.

DemoServlet.java
import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class DemoServlet extends HttpServlet{

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

public void doGet(HttpServletRequest req,HttpServletResponse res)
throws ServletException,IOException
{

res.setContentType("text/html");
PrintWriter pw=res.getWriter();

response.sendRedirect("http://www.google.com");

pw.close();
}}

Creating custom google search using sendRedirect

In this example, we are using sendRedirect method to send request to google server

with the request data.

index.html
<!DOCTYPE html>
<html>
<head>

<meta charset="ISO-8859-1">
<title>sendRedirect example</title>
</head>
<body>

<form action="MySearcher">
<input type="text" name="name">
<input type="submit" value="Google Search">
</form>

</body>
</html>

MySearcher.java
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class MySearcher extends HttpServlet {
 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String name=request.getParameter("name");
 response.sendRedirect("https://www.google.co.in/#q="+name);
 }

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

}

1. AIM: Write a Servlet for Registration to connect to database Insert the details of the users who

register with the web site.

2. Write a Servlet for Login to connect to database using registration details

Crate the Table in Oracle Database

SQL> create table userdetails(uname varchar2(20),pass varchar2(15),address varchar2(20),phno

number(15),email varchar2(25));

Table created.

Working With Context Initialization Parameters

Let’s create cmrsite application.

You need to perform the following broad level steps to create this application:

1. Create the Home.html file

2. Create the Login.html file

3. Create Register.html file

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

4. Create the RegistrationServlet Servlet

5. Create the LoginServlet Servlet

6. Create the Deployment descriptor file

7. Run the application

Crate the Home.html file

Output:

<!--Home.html-->

<html><body>

<center><h1>CMR COLLGE OF ENGINEERING & TECHNOLOGY.</h1></center>

<table border="1" width="100%" height="100%">

<tr>

 <td width="15%" valign="top" align="center">

Login

Register

 </td>

 <td valign="top" align="center">

 Welcome to CMRCET

 </td>

</tr>

</table>

</body></html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Creating the Login.html file

<!--Login.html-->
<html> <body>
<center><h1>CMR College of Engineering & Technology</h1></center>
<table border="1" width="100%" height="100%">
<tr>
<td width="15%" valign="top" align="center">

Login

Register

 </td>
 <td valign="top" align="center">

 <form action="login"><table>
 <tr>
 <td colspan="2" align="center">Login Page</td>
 </tr>
 <tr>
 <td colspan="2" align="center"> </td>
 </tr>
 <tr>
 <td>User Name</td>
 <td><input type="text" name="uname"/></td>
 </tr>
 <tr>
 <td>Password</td>
 <td><input type="password" name="pass"/></td>
 </tr>
 <tr>
 <td> </td>
 <td> </td>
 </tr>
 <tr>
 <td colspan="2" align="center"><input type="submit" value="LogIN"/></td>
 </tr>
 </table></form>
 </td>
</tr>
</table>
</body></html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Output:

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Creating the Register.html file

<!--Register.html-->
<html> <body>
<center><h1>CMR COLLEGE OF ENGINEERING & TECHNOLOGY</h1></center>
<table border="1" width="100%" height="100%">
<tr>
 <td width="15%" valign="top" align="center">

Login

Register

 </td>
 <td valign="top" align="center">

 <form action="register"><table>
 <tr>
 <td colspan="2" align="center">Registration Page</td>
 </tr>
 <tr>
 <td colspan="2" align="center"> </td>
 </tr>
 <tr>
 <td>User Name</td>
 <td><input type="text" name="uname"/></td>
 </tr>
 <tr>
 <td>Password</td>
 <td><input type="password" name="pass"/></td>
 </tr>
 <tr>
 <td>Re-Password</td>
 <td><input type="password" name="repass"/></td>
 </tr>
 <tr>
 <td>Address</td>
 <td><input type="text" name="addr"/></td>
 </tr>
 <tr>
 <td>Phone Number</td>
 <td><input type="text" name="phno"/></td>
 </tr>
 <tr> <td>Email ID</td>
 <td><input type="text" name="email"/></td>
 </tr>
 <tr> <td> </td>
 <td> </td>
 </tr>
 <tr><td colspan="2" align="center"><input type="submit" value="Register"/></td>
 </tr>
 </table></form></td></tr></table></body></html>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Output:

Creating the RegistrationServlet Servlet

//RegistrationServlet.java

package com.yellaswamy.servlets;

import javax.servlet.*;

import java.io.*;

import java.sql.*;

/**

 * @author yellaswamy

 */

public class RegistrationServlet extends GenericServlet {

 private Connection con;

 private PreparedStatement ps=null;

 public void init() throws ServletException {

 System.out.println("In init");

 try {

 ServletContext ctxt=getServletContext();

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 //Getting the Driver class name from context parameter

 String driverClassName=ctxt.getInitParameter("driverClassName");

 Class.forName(driverClassName);

 //Getting the JDBC URL from context parameter

 String url=ctxt.getInitParameter("url");

 //Getting the DB Username, password & sqlstatement from servlet init parameter

 String dbuser=getInitParameter("dbuser");

 String dbpass=getInitParameter("dbpass");

 String sqlst=getInitParameter("sqlstatement");

 con=DriverManager.getConnection(url, dbuser, dbpass);

 ps=con.prepareStatement(sqlst);

 }//try

 catch(Exception e){

 e.printStackTrace();

 throw new ServletException("Initialization failed, Unable to get DB

connection");

 }//catch

 }//init

public void service (ServletRequest req, ServletResponse res) throws ServletException, IOException

{

 System.out.println("In service");

 res.setContentType("text/html");
 PrintWriter out=res.getWriter();
 try {

 String uname=req.getParameter("uname");
 String pass= req.getParameter("pass");
 String repass= req.getParameter("repass");

 if (uname==null||uname.equals("")
 ||pass==null||pass.equals("")
 ||!pass.equals(repass)) {

 out.println("<html><body><center>");
 out.println("<i>Given details are not valid to register</i>
");

 out.println("<i>Please try again later</i>");

 out.println("</center></body></html>");

 return;

 }//if

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 String addr=req.getParameter("addr");

 String phno=req.getParameter("phno");

 String email=req.getParameter("email");

 ps.setString(1,uname);

 ps.setString(2,pass);

 ps.setString(3,addr);

 ps.setString(4,phno);

 ps.setString(5,email);

 int count=ps.executeUpdate();

 if (count==1||count==Statement.SUCCESS_NO_INFO){

 out.println("<html><body>");

 out.println("<center><h1>CMRCET</h1></center>");

 out.println("<table border=\"1\" width=\"100%\" height=\"100%\">");

 out.println("<tr>");

 out.println("<td width=\"15%\" valign=\"top\" align=\"center\">");

 out.println("
Login
");

 out.println("
Register
");

 out.println("</td>");

 out.println("<td valign=\"top\" align=\"center\">
");

 out.println("<h3>Welcome, "+uname+"</h3>
");

 out.println("<h2>Enjoy browsing the Site</h2>");

 out.println("</td></tr></table>");

 out.println("</body></html>");

 }

 else{

 out.println("<html><body><center>");

 out.println("Given details are incorrect
");

 out.println("<i>Please try again later</i>");

 out.println("</center></body></html>");

 }

 }//try

 catch(Exception e){

 out.println("<html><body><center>");

 out.println("<h2>Unable to the process the request try after some time</h2>");

 out.println("</center></body></html>");

 }//catch

 }//service

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

public void destroy ()

{

 System.out.println("In destroy");

 try {con.close();}

 catch(Exception e){}

 }//destroy

}//class

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Creating the LoginServlet Servlet

//LoginServlet

package com.yellaswamy.servlets;

import javax.servlet.*;

import java.io.*;

import java.sql.*;

/**

 * @author yellaswamy

 */

public class LoginServlet extends GenericServlet {

 private Connection con;

 private PreparedStatement ps=null;

 public void init() throws ServletException {

 System.out.println("In init");

 try {

 ServletContext ctxt=getServletContext();

 //Getting the Driver class name from context parameter

 String driverClassName=ctxt.getInitParameter("driverClassName");

 Class.forName(driverClassName);

 //Getting the JDBC URL from context parameter

 String url=ctxt.getInitParameter("url");

 //Getting the DB Username, password & sqlstatement from servlet init

parameter

 String dbuser=getInitParameter("dbuser");

 String dbpass=getInitParameter("dbpass");

 String sqlst=getInitParameter("sqlstatement");

 con=DriverManager.getConnection(url, dbuser, dbpass);

 ps=con.prepareStatement(sqlst);

 }//try

 catch(Exception e){

 e.printStackTrace();

 throw new ServletException("Initialization failed, Unable to get DB

connection");

 }//catch

 }//init

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 public void service (ServletRequest req, ServletResponse res) throws ServletException,

IOException {

 System.out.println("In service");

 res.setContentType("text/html");

 PrintWriter out=res.getWriter();

 try {

 String uname=req.getParameter("uname");

 String pass= req.getParameter("pass");

 if (uname==null||uname.equals("")||pass==null||pass.equals("")) {

 out.println("<html><body><center>");

 out.println("<i>User Name and Password cannot be

empty</i>
");

 out.println("<i>We cannot log you into your account at this time.

Please try again later</i>");

 out.println("</center></body></html>");

 return;

 }//if

 ps.setString(1,uname);

 ps.setString(2,pass);

 ResultSet rs=ps.executeQuery();

 if (rs.next()){

 out.println("<html><body>");

 out.println("<center><h1>CMR COLLEGE OF ENGINEERING &

Technology</h1></center>");

 out.println("<table border='1' width='100%' height='100%'>");

 out.println("<tr>");

 out.println("<td width='15%' valign='top' align='center'>");

 out.println("
Login
");

 out.println("
Register");

 out.println("</td>");

 out.println("<td valign='top' align='center'>
");

 out.println("<h3>Welcome, "+uname+"</h3>
");

 out.println("<h2>Enjoy browsing the Site</h2>");

 out.println("</td></tr></table>");

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 out.println("</body></html>");

 }

 else{

 out.println("<html><body><center>");

 out.println("Given username and password are incorrect
");

 out.println("<i>We cannot log you into your account at this time.

Please try again later</i>");

 out.println("</center></body></html>");

 }

 }//try

 catch(Exception e){

 out.println("<html><body><center>");

 out.println("<h2>Unable to the process the request try after some time</h2>");

 out.println("</center></body></html>");

 }//catch

 }//service

 public void destroy () {

 System.out.println("In destroy");

 try {con.close();}

 catch(Exception e){}

 }//destroy

}//class

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Creating the Deployment Descriptor file(web.xml)

<?xml version="1.0"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-

app_2_3.dtd">

<web-app>

 <context-param>

 <param-name>driverClassName</param-name>

 <param-value>oracle.jdbc.driver.OracleDriver</param-value>

 </context-param>

 <context-param>

 <param-name>url</param-name>

 <param-value>

 jdbc:oracle:thin:@localhost:1521:xe

 </param-value>

 </context-param>

 <servlet>

 <servlet-name>ls</servlet-name>

 <servlet-class>com.yellaswamy.servlets.LoginServlet</servlet-class>

 <init-param>

 <param-name>dbuser</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>dbpass</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>sqlstatement</param-name>

 <param-value>

 select * from userdetails where uname=? and pass=?

 </param-value>

 </init-param>

 </servlet>

 <servlet>

 <servlet-name>rs</servlet-name>

 <servlet-class>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

 com.yellaswamy.servlets.RegistrationServlet

 </servlet-class>

 <init-param>

 <param-name>dbuser</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>dbpass</param-name>

 <param-value>yellaswamy</param-value>

 </init-param>

 <init-param>

 <param-name>sqlstatement</param-name>

 <param-value>

 insert into userdetails values(?,?,?,?,?)

 </param-value>

 </init-param>

 </servlet>

 <servlet-mapping>

 <servlet-name>ls</servlet-name>

 <url-pattern>/login</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>rs</servlet-name>

 <url-pattern>/register</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>Home.html</welcome-file>

 </welcome-file-list>

</web-app>

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Now arrange all the files in a directory structure ,as shown below

E:\WTLABFINALPROGRAMS\cmrsite>tree/f

Folder PATH listing for volume data

Volume serial number is 08FA-885D

E:.

│ CMRSITE.docx

│ Home.html

│ Login.html

│ Register.html

│

└───WEB-INF

 │ web.xml

 │

 ├───classes

 │ │ LoginServlet.java

 │ │ RegistrationServlet.java

 │ │

 │ └───com

 │ └───yellaswamy

 │ └───servlets

 │ LoginServlet.class

 │ RegistrationServlet.class

 │

 └───lib

 classes12.jar

 ojdbc14.jar

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

Run the Application

http://localhost:8086/cmrsite/

http://localhost:8086/cmrsite/Register.html

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

http://localhost:8086/cmrsite/Login.html

http://localhost:8086/cmrsite/Login.html

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

K.Yellaswamy ,AssistantProfessor|CMR College of Engineering & Technology
E-mail:toyellaswamy@gmail.com

