

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

UNIT-VIII

Introduction of Java Database Connectivity

JDBC - Java Database Connectivity.

JDBC provides API or Protocol to interact with different databases.

With the help of JDBC driver we can connect with different types of databases.

Driver is must needed for connection establishment with any database.

A driver works as an interface between the client and a database server.

JDBC have so many classes and interfaces that allow a java application to send request made by

user to any specific DBMS(Data Base Management System).

JDBC supports a wide level of portability.

JDBC provides interfaces that are compatible with java application.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

components and specification of JDBC:

Components of JDBC:

JDBC has four main components as under and with the help of these components java

application can connect with database.

The JDBC API - it provides various methods and interfaces for easy communication with

database.

The JDBC DriverManager - it loads database specific drivers in an application to establish

connection with database.

The JDBC test suite - it will be used to test an operation being performed by JDBC drivers.

The JDBC-ODBC bridge - it connects database drivers to the database.

JDBC Specification:

Different version of JDBC has different specification as under.

JDBC 1.0 - it provides basic functionality of JDBC

JDBC 2.0 - it provides JDBC API(JDBC 2.0 Core API and JDBC 2.0 Optional Package API).

JDBC 3.0 - it provides classes and interfaces in two packages(java.sql and javax.sql).

JDBC 4.0 - it provides so many extra features like

Auto loading of the driver interface.

Connection management

ROWID data type support.

Enhanced support for large object like BLOB(Binary Large Object) and CLOB(Character Large

Object).

What Does JDBC Do?

Simply put, JDBC makes it possible to do three things:

1. establish a connection with a database

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

2. send SQL statements

3. process the results.

JavaSoft provides three JDBC product components as part of the Java Developer's Kit (JDK):

1. . the JDBC driver manager,

2. . the JDBC driver test suite, and

3. . the JDBC-ODBC bridge.

The JDBC driver manager is the backbone of the JDB architecture. It actually is quite small and

simple; its primary function is to connect Java applications to the correct JDBC driver and then

get out of the way

JDBC Architecture:

As we all know now that driver is required to communicate with database.

JDBC API provides classes and interfaces to handle request made by user and response made by

database.

Some of the important JDBC API are as under.

DriverManager

Driver

Connection

Statement

PreparedStatement

CallableStatement

ResultSet

DatabaseMetaData

ResultSetMetaData

Here The DriverManager plays an important role in JDBC architecture.

It uses some database specific drivers to communicate our J2EE application to database.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

As per the diagram first of all we have to program our application with JDBC API.

With the help of DriverManager class than we connect to a specific database with the help of

spcific database driver.

Java drivers require some library to communicate with the database.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

We have four different types of java drivers.

We will learn all that four drivers with architecture in next chapter.

Some drivers are pure java drivers and some are partial.

So with this kind of JDBC architecture we can communicate with specific database.

JDBC Drivers:

JDBC Driver Types:

There are four categories of drivers by which developer can apply a connection between Client

(The JAVA application or an applet) to a DBMS.

(1) Type 1 Driver : JDBC-ODBC Bridge.

(2) Type 2 Driver : Native-API Driver (Partly Java driver).

(3) Type 3 Driver : Network-Protocol Driver (Pure Java driver for database Middleware).

(4) Type 4 Driver : Native-Protocol Driver (Pure Java driver directly connected to database).

(1) Type 1 Driver: JDBC-ODBC Bridge :-

The JDBC type 1 driver which is also known as a JDBC-ODBC Bridge is a convert JDBC

methods into ODBC function calls.

SunprovidesJDBC-ODBCBridge driver by “sun.jdbc.odbc.JdbcOdbcDriver”.

The driver is a platform dependent because it uses ODBC which is depends on native libraries of

the operating system and also the driver needs other installation for example, ODBC must be

installed on the computer and the database must support ODBC driver.

Type 1 is the simplest compare to all other driver but it’s a platform specific i.e. only on

Microsoft platform.

For type-1 we create the DSN name.

Steps for DSN:

1. Start

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

2. Control panel

3. Administrator tools

4. Data source odbc

5. System dsn

6. Add

7. Microsoft oracle for odbc

8. Finish

9. ora

The JDBC-ODBC Bridge is use only when there is no PURE-JAVA driver available for a

particular database.

The driver is a platform dependent because it uses ODBC which is depends on native libraries of

the operating system and also the driver needs other installation for example, ODBC must be

installed on the computer and the database must support ODBC driver.

Java DB is Oracle's supported distribution of the open source Apache Derby database. Its ease of

use, standards compliance, full feature set, and small footprint make it the ideal database for Java

developers. Java DB is written in the Java programming language, providing "write once, run

anywhere" portability. It can be embedded in Java applications, requiring zero administration by

the developer or user. It can also be used in client server mode. Java DB is fully transactional and

provides a standard SQL interface.

The JDBC driver manager is the backbone of the JDB architecture. It actually is quite small and

simple; its primary function is to connect Java applications to the correct JDBC driver and then

get out of the way

Architecture Diagram:

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Process:

Java Application → JDBC APIs → JDBC Driver Manager → Type 1 Driver → ODBC

Driver → Database library APIs → Database

Advantage:

(1) Connect to almost any database on any system, for which ODBC driver is installed.

(2) It’s an easy for installation as well as easy(simplest) to use as compare the all other driver.

Disadvantage:

(1) The ODBC Driver needs to be installed on the client machine.

(2) It’s a not a purely platform independent because its use ODBC which is depends on native

libraries of the operating system on client machine.

(3) Not suitable for applets because the ODBC driver needs to be installed on the client machine.

(2) Type 2 Driver: Native-API Driver (Partly Java driver) :-

The JDBC type 2 driver is uses the libraries of the database which is available at client side and

this driver converts the JDBC method calls into native calls of the database so this driver is also

known as a Native-API driver.

Architecture Diagram :

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Process:

Java Application → JDBC APIs → JDBC Driver Manager → Type 2 Driver → Vendor

Client Database library APIs → Database

Advantage:

(1) There is no implantation of JDBC-ODBC Bridge so it’s faster than a type 1 driver; hence

the performance is better as compare the type 1 driver (JDBC-ODBC Bridge).

Disadvantage:

(1) On the client machine require the extra installation because this driver uses the vendor client

libraries.

(2) The Client side software needed so cannot use such type of driver in the web-based

application.

(3) Not all databases have the client side library.

(4) This driver supports all JAVA applications except applets.

(3) Type 3 Driver: Network-Protocol Driver (Pure Java driver for database Middleware) :-

The JDBC type 3 driver uses the middle tier(application server) between the calling program and

the database and this middle tier converts JDBC method calls into the vendor specific database

protocol and the same driver can be used for multiple databases also so it’s also known as a

Network-Protocol driver as well as a JAVA driver for database middleware.

Architecture Diagram:

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Process:

Java Application → JDBC APIs → JDBC Driver Manager → Type 3 Driver →

Middleware (Server)→ any Database

Advantage:

(1) There is no need for the vendor database library on the client machine because the

middleware is database independent and it communicates with client.

(2) Type 3 driver can be used in any web application as well as on internet also because there is

no any software require at client side.

(3) A single driver can handle any database at client side so there is no need a separate driver for

each database.

(4) The middleware server can also provide the typical services such as connections, auditing,

load balancing, logging etc.

Disadvantage:

(1) An Extra layer added, may be time consuming.

(2) At the middleware develop the database specific coding, may be increase complexity.

(4) Type 4 Driver: Native-Protocol Driver (Pure Java driver directly

connected to database) :-

The JDBC type 4 driver converts JDBC method calls directly into the vendor specific database

protocol and in between do not need to be converted any other formatted system so this is the

fastest way to communicate quires to DBMS and it is completely written in JAVA because of

that this is also known as the “direct to database Pure JAVA driver”.

If we are using type-4 driver in oracle then we need to add jar file to the class path because it was

given by third party.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Architecture Diagram:

Process:

Java Application → JDBC APIs → JDBC Driver Manager → Type 4 Driver (Pure JAVA

Driver) → Database Server

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Advantage:

(1) It’s a 100% pure JAVA Driver so it’s a platform independence.

(2) No translation or middleware layers are used so consider as a faster than other drivers.

(3) The all process of the application-to-database connection can manage by JVM so the

debugging is also managed easily.

Disadvantage:

(1)There is a separate driver needed for each database at the client side.

(2) Drivers are Database dependent, as different database vendors use different network

protocols.

JDBC APIs:

If any java application or an applet wants to connect with a database then there are various

classes and interfaces available in java.sql package.

Depending on the requirements these classes and interfaces can be used.

Some of them are list out the below which are used to perform the various tasks with database as

well as for connection.

Class or Interface Description

Java.sql.Connection Create a connection with specific database

Java.sql.DriverManager
The task of DriverManager is to manage the database

driver

Java.sql.Statement
It executes SQL statements for particular connection

and retrieve the results

Java.sql.PreparedStatement
It allows the programmer to create prepared SQL

statements

Java.sql.CallableStatement It executes stored procedures

Java.sql.ResultSet
This interface provides methods to get result row by

row generated by SELECT statements

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

The Connection interface:

The Connection interface used to connect java application with particular database.

After crating the connection with database we can execute SQL statements for that particular

connection using object of Connection and retrieve the results.

The interface has few methods that makes changes to the database temporary or permanently.

The some methods are as given below.

Method Description

void close()
This method frees an object of type Connection

from database and other JDBC resources.

void commit()

This method makes all the changes made since the

last commit or rollback permanent. It throws

SQLExeception.

Statement createStatement()

This method creates an object of type Statement

for sending SQL statements to the database. It

throws SQLExeception.

boolean isClosed()
Return true if the connection is close else return

false.

CallableStatement prepareCall(String s)

This method creates an object of type

CallableStatement for calling the stored

procedures from database. It throws

SQLExeception.

PreparedStatement prepareStatement(String

s)

This method creates an object of type

PrepareStatement for sending dynamic (with or

without IN parameter) SQL statements to the

database. It throws SQLExeception.

void rollback()
This method undoes all changes made to the

database.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Statement Interface:

The Statement interface is used for to execute a static query.

It’s a very simple and easy so it also calls a “Simple Statement”.

The statement interface has several methods for execute the SQL statements and also get the

appropriate result as per the query sent to the database.

Some of the most common methods are as given below

Method Description

void close()
This method frees an object of type Statement

from database and other JDBC resources.

boolean execute(String s)

This method executes the SQL statement specified

by s. The getResultSet() method is used to retrieve

the result.

ResultSet getResultet()
This method retrieves the ResultSet that is

generated by the execute() method.

ResultSet executeQuery(String s)

This method is used to execute the SQL statement

specified by s and returns the object of type

ResultSet.

int getMaxRows()
This method returns the maximum number of rows

those are generated by the executeQuery() method.

Int executeUpdate(String s)

This method executes the SQL statement specified

by s. The SQL statement may be a SQL insert,

update and delete statement.

The Prepared Statement Interface:

The Prepared Statement interface is used to execute a dynamic query (parameterized SQL

statement) with IN parameter.

IN Parameter:-

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

In some situation where we need to pass different values to an query then such values can be

specified as a “?” in the query and the actual values can be passed using the setXXX() method at

the time of execution.

Syntax :

 setXXX(integer data ,XXX value);

Where XXX means a data type as per the value we want to pass in the query.

For example,

String query = "Select * from Data where ID = ? and Name = ? ";

PreparedStatement ps = con.prepareStatement(query);

 ps.setInt(1, 1);

 ps.setString(2, "Ashutosh Abhangi");

The Prepared statement interface has several methods to execute the parameterized SQL

statements and retrieve appropriate result as per the query sent to the database.

Some of the most common methods are as given below

Method Description

void close()

This method frees an object of type Prepared

Statement from database and other JDBC

resources.

boolean execute()

This method executes the dynamic query in the

object of type Prepared Statement.The

getResult() method is used to retrieve the result.

ResultSet executeQuery()

This method is used to execute the dynamic

query in the object of type Prepared

Statement and returns the object of type

ResultSet.

Int executeUpdate()

This method executes the SQL statement in the

object of type Prepared Statement. The SQL

statement may be a SQL insert, update and

delete statement.

ResultSetMetaData getMetaData()
The ResultSetMetaData means a deta about the

data of ResultSet.This method retrieves an

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

The JDBC API

The JDBC API is based mainly on a set of interfaces, not classes. It's up to the manufacturer of

the driver to implement the interfaces with their own set of classes.

A class diagram that shows the basic JDBC classes and interfaces; these make up the core API.

Notice that the only concrete class is DriverManager. The rest of the core API is a set of

interfaces.

 The interfaces of the core JDBC API

DriverManager is used to load a JDBC Driver. A Driver is a software vendor's implementation

of the JDBC API. After a driver is loaded, DriverManager is used to get a Connection.

In turn, a Connection is used to create a Statement, or to create and prepare a PreparedStatement

or CallableStatement.

Statement and PreparedStatement objects are used to execute SQL statements. CallableStatement

objects are used to execute stored procedures.

A Connection can also be used to get a DatabaseMetaData object describing a database's

functionality.

The results of executing a SQL statement using a Statement or PreparedStatement are

returned as a ResultSet.

 A ResultSet can be used to get the actual returned data or a ResultSetMetaData object that can

be queried to identify the types of data returned in the ResultSet.

 A Struct is a weakly typed object that represents a database object as a record.

A Ref is a reference to an object in a database. It can be used to get to a database object. An

Array is a weakly typed object that represents a database collection object as an array. The

SQLData interface is implemented by custom classes you write to represent database objects as

Java objects in your application. SQLInput and SQLOutput are used by the Driver in the creation

of your custom classes during retrieval and storage.

object of type ResultSetMetaData that contains

information about the columns of the ResultSet

object that will be return when a query is

execute.

int getMaxRows()

This method returns the maximum number of

rows those are generated by the executeQuery()

method.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

UNIT-8

DATABASE ACCESS USING JDBC

1) Create a table using JDBC

//create a Table using Oracle Type4 Driver/MySQL Driver

//Working with Statement Interface

package com.yellaswamy.jdbcexamples;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class CreateTable

{

public static void main(String args[])throws SQLException,ClassNotFoundException

{

 //Get Connection

 Connection con=prepareConnection();

 //obtain a statement

 Statement st=con.createStatement();

 //for oracle

 String query="create table mytable1(col1 varchar2(20),col2 number,col3 number(10,2))";

 //for MySQL

 //String query="create table mytable1(col1 varchar(20),col2 numeric,col3

numeric(10,2))";

 //Execute the query

 st.executeUpdate(query);

 System.out.println("Table created Successfully");

}

public static Connection prepareConnection() throws SQLException,ClassNotFoundException

{

 // TODO Auto-generated method stub

 //Oracle Database

 String driverClassName="oracle.jdbc.driver.OracleDriver";

 String url="jdbc:oracle:thin:@localhost:1521:xe";

 String userName="system";

 String password="manager";

 //for MySQL Database

 /*String driverClassName="com.mysql.jdbc.Driver";

 String url="jdbc:mysql://localhost:3306/cmrcetdb";

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

 String userName="root";

 String password="root";*/

 //load driver class

 Class.forName(driverClassName);

 //obtain a connection

 Connection conn=DriverManager.getConnection(url,userName,password);

 return conn;

}

}

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

E:\WTLABFINALPROGRAMS\JDBC\1CreateTable>set

classpath=E:\WTLABFINALPROGRAMS\JDBC\lib\mysql-connector-java-3.0.11-stable-

bin.jar;.;

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Output:

//For Connecting to Oracle Database

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Output:

//2. InsertEx.java

//Working with statement

package com.yellaswamy.jdbcexamples;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

public class InsertEx

{

 public static void main(String[] args) throws SQLException, ClassNotFoundException

 {

 //Get Connection

 Connection con=prepareConnection();

 //obtain a statement

 Statement st=con.createStatement();

 //String query="create table mytable(col1 varchar2(20),col2 number,col3

number(10,2))";

 String query="insert into mytable1 values('yellaswamy',1215,123.13)";

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

 //Execute the query

 int count=st.executeUpdate(query);

 System.out.println("Number of rows affected by this query="+count);

 }

public static Connection prepareConnection() throws SQLException,ClassNotFoundException

{

 // TODO Auto-generated method stub

 String driverClassName="oracle.jdbc.driver.OracleDriver";

 String url="jdbc:oracle:thin:@localhost:1521:xe";

 String userName="system";

 String password="manager";

 //load driver class

 Class.forName(driverClassName);

 //obtain a connection

 Connection conn=DriverManager.getConnection(url,userName,password);

 return conn;

}

}

//3. PreparedStatementEx1.java

package com.yellaswamy.jdbcexamples;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

public class PreparedStatementEx1

{

public static void main(String args[])throws Exception

{

String driverClassName="oracle.jdbc.driver.OracleDriver";

String url="jdbc:oracle:thin:@localhost:1521:xe";

String userName="system";

String password="manager";

 //load driver class

 Class.forName(driverClassName);

 //obtain a connection

 Connection conn=DriverManager.getConnection(url,userName,password);

 String query="insert into mytable values(?,?,?)";

 //step1:Get Prepared Statement

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

 PreparedStatement ps=conn.prepareStatement(query);

 //step2:set parameters

 ps.setString(1,"shashank1");

 ps.setInt(2,1216);

 ps.setDouble(3,123.56);

 //Step3:Execute the Query

 int i=ps.executeUpdate();

 System.out.println("Record inserted count="+i);

 //To excecute the query once again

 ps.setString(1,"Kamalamma1");

 ps.setInt(2,1217);

 ps.setDouble(3,125.65);

 i=ps.executeUpdate();

 System.out.println("Query Excecuted for the second time count="+i);

 conn.close();

}

}

//4.Resultset Example

package com.yellaswamy.jdbcexample;

import java.sql.*;

public class GetAllRows

{

public static void main(String args[])throws

 SQLException, ClassNotFoundException

{ //Get Connection

Connection con=prepareConnection ();

// Obtain a Statement

Statement st=con.createStatement ();

String query = "select * from mytable";

//Execute the Query

ResultSet rs=st.executeQuery (query);

System.out.println ("COL1\t\tCOL2\tCOL3");

 while (rs.next ())

 {

System.out.print (rs.getString ("COL1") + "\t");

System.out.print (rs.getInt ("COL2") + "\t");

System.out.println (rs.getDouble ("COL3")+"\t");

 }//while

 con.close ();

 }//main

public static Connection prepareConnection()

 throws SQLException,

 ClassNotFoundException

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

 {

String driverClassName="oracle.jdbc.driver.OracleDriver";

String url="jdbc:oracle:thin:@localhost:1521:xe";

 String username="system";

 String password="manager";

 //Load driver class

 Class.forName (driverClassName);

 // Obtain a connection

 return DriverManager. getConnection (url, username, password);

 }//prepareConnection

}//class

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

CallableStatement Interface

To call the stored procedures and functions, CallableStatement interface is used.

We can have business logic on the database by the use of stored procedures and

functions that will make the performance better because these are precompiled.

Suppose you need the get the age of the employee based on the date of birth, you may

create a function that receives date as the input and returns age of the employee as the

output.

1. The java.sql.CallableStatement is a part of JDBC API that describes a standard abstraction for the

CallableStatement object,implemented by third-party vendor as a part of JDBC driver.

2. The CallableStatement object provides support for both input and output parameters.

What is the difference between stored procedures and
functions.

The differences between stored procedures and functions are given below:

Stored Procedure Function

is used to perform business logic. is used to perform calculation.

must not have the return type. must have the return type.

may return 0 or more values. may return only one values.

We can call functions from the procedure. Procedure cannot be called from

function.

Procedure supports input and output

parameters.

Function supports only input parameter.

Exception handling using try/catch block

can be used in stored procedures.

Exception handling using try/catch can't

be used in user defined functions.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Syntax of creating a stored procedure:

Create or [Replace] Procedure procedure_name

[(parameter[,parameter])]

IS

[Declarations]

BEGIN

 Executables

 [EXCEPTION exceptions]

END [Procedure_name]

Steps to use CallableStatement in an Application are as follows:
1. Create the CallableStatement object

2. Setting the values of parameters

3. Registering the OUT parameter type

4. Excecuting the stored procedure or function

5. Retrieving the parameter values

Let’s discuss these steps in details

Create the CallableStatement object:

The first step to use CallableStatement is to create the CallableStatement object.The

CallableStatement object can be created by invoking the prepareCall(String) method of the

Connection object.

The syntax to call the prepareCall method in an application is as follows:

{call procedure_name(?,?,…)} //Calling the procedure method with parameters

{call procedure_name} //with no parameter

Setting the values of parameters

After creating the CallableStatement object,you need to set the values for the IN and IN OUT

type parameters of stored procedure.The values of these parameters can be set by calling the

setXXX() methods of the CallableStatement object.These methods are used to pass the values to

the IN OUT parameters.The values for the parameter can be set by using the following syntax:

setXXX(int index,XXX value)

Registering the OUT Parameter Type

The OUT or IN OUT parameters,which are used in a procedure and represented by

CallableStatement,must be registered to collect the values of the parameters after the stored

procedure is executed.

The parameters can be registered by using the following syntax:

 registerOutParameter(int index,int type)

Excecuting the Stored Procedure or Function

After registering the OUT parameter type you need to execute the procedure by using execute()

method of CallableStatement object.The execute() method of CallableStatement does not take

any argument.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Retrieving the Parameter Values:

After executing the stored procedure,you can retrieve its OUT or IN OUT type parameter values.

EXECUTING A STORED PROCEDURE WITH IN PARAMETERS

Create the Following Tables:

create table bank(Accno number,Name varchar2(20),Bal number(10,2),Acctype number);

Create table personal_details(Accno number,address varchar2(20),phno number);

Create the following Procedure:

create or replace procedure createAccount(accnumber number,actype number,acname

varchar2,amt number,addr varchar2,phno number)is

begin

insert into bank values(accnumber,acname,amt,actype);

insert into personal_details values(accnumber,addr,phno);

end;

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

// CallableStatementEx1.java

package com.yellaswamy.jdbc;

import java.sql.*;

/**

 * @author yellaswamy

 */

public class CallableStatementEx1 {

 public static void main(String s[]) throws Exception {

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

 Connection

con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","yellaswamy","yella

swamy");

 //Step1: Get CallableStatement

 CallableStatement cs= con.prepareCall("{call createAccount (?,?,?,?,?,?)}");

 //Step2: set IN parameters

 cs.setInt(1, 101);

 cs.setInt(2, 10);

 cs.setString(3, "Yellaswamy");

 cs.setDouble(4, 10000);

 cs.setString(5, "Hyderabad");

 cs.setInt(6, 123456789);

 //Step3 : register OUT parameters

 //In this procedure example we dont have OUT parameters

 //Step4

 cs.execute();

 System.out.println("Account Created");

 con.close();

 }//main

}//class

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Executing a Stored Procedure with OUT Parameters:

We create an application that calls a stored procedure name getBalance() by using

CallableStatement.

First create a procedure named getBalance() as shown in the following code snippet:

create or replace procedure getBalance(acno number,amt OUT number)is

begin

select bal into amt from bank where accno=acno;

end;

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

// CallableStatementEx2.java

package com.yellaswamy.jdbc;

import java.sql.*;

/**

 * @author yellaswamy

 */

public class CallableStatementEx2 {

public static void main(String s[]) throws Exception {

 Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();

 Connection

con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","yellaswamy","yellas

wamy");

 CallableStatement cs= con.prepareCall("{call getBalance(?,?)}");

 cs.setInt(1, Integer.parseInt(s[0]));

 cs.registerOutParameter(2, Types.DOUBLE);

 cs.execute();

 System.out.println("Balance : "+ cs.getDouble(2));

 con.close();

 }//main

}//class

OUTPUT:

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Package javax.sql Description

Provides the API for server side data source access and processing from the JavaTM programming

language. This package supplements the java.sql package and, as of the version 1.4 release, is

included in the Java Platform, Standard Edition (Java SETM). It remains an essential part of the

Java Platform, Enterprise Edition (Java EETM).

The javax.sql package provides for the following:

1. The DataSource interface as an alternative to the DriverManager for establishing a

connection with a data source

2. Connection pooling and Statement pooling

3. Distributed transactions

4. Rowsets

Applications use the DataSource and RowSet APIs directly, but the connection pooling and

distributed transaction APIs are used internally by the middle-tier infrastructure.

Using a DataSource Object to Make a Connection

The javax.sql package provides the preferred way to make a connection with a data source.

The DriverManager class, the original mechanism, is still valid, and code using it will continue

to run. However, the newer DataSource mechanism is preferred because it offers many

advantages over the DriverManager mechanism.

These are the main advantages of using a DataSource object to make a connection:

 Changes can be made to a data source's properties, which means that it is not necessary to

make changes in application code when something about the data source or driver

changes.

 Connection and Statement pooling and distributed transactions are available through a

DataSource object that is implemented to work with the middle-tier infrastructure.

Connections made through the DriverManager do not have connection and statement

pooling or distributed transaction capabilities.

Driver vendors provide DataSource implementations. A particular DataSource object

represents a particular physical data source, and each connection the DataSource object creates

is a connection to that physical data source.

A logical name for the data source is registered with a naming service that uses the Java Naming

and Directory InterfaceTM (JNDI) API, usually by a system administrator or someone performing

the duties of a system administrator. An application can retrieve the DataSource object it wants

by doing a lookup on the logical name that has been registered for it. The application can then

use the DataSource object to create a connection to the physical data source it represents.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

A DataSource object can be implemented to work with the middle tier infrastructure so that the

connections it produces will be pooled for reuse. An application that uses such a DataSource

implementation will automatically get a connection that participates in connection pooling. A

DataSource object can also be implemented to work with the middle tier infrastructure so that

the connections it produces can be used for distributed transactions without any special coding.

Connection Pooling and Statement Pooling

Connections made via a DataSource object that is implemented to work with a middle tier

connection pool manager will participate in connection pooling. This can improve performance

dramatically because creating new connections is very expensive. Connection pooling allows a

connection to be used and reused, thus cutting down substantially on the number of new

connections that need to be created.

Connection pooling is totally transparent. It is done automatically in the middle tier of a Java EE

configuration, so from an application's viewpoint, no change in code is required. An application

simply uses the DataSource.getConnection method to get the pooled connection and uses it

the same way it uses any Connection object.

The classes and interfaces used for connection pooling are:

 ConnectionPoolDataSource
 PooledConnection
 ConnectionEvent
 ConnectionEventListener
 StatementEvent
 StatementEventListener

The connection pool manager, a facility in the middle tier of a three-tier architecture, uses these

classes and interfaces behind the scenes. When a ConnectionPoolDataSource object is called

on to create a PooledConnection object, the connection pool manager will register as a

ConnectionEventListener object with the new PooledConnection object. When the

connection is closed or there is an error, the connection pool manager (being a listener) gets a

notification that includes a ConnectionEvent object.

If the connection pool manager supports Statement pooling, for PreparedStatements, which

can be determined by invoking the method DatabaseMetaData.supportsStatementPooling,

the connection pool manager will register as a StatementEventListener object with the new

PooledConnection object. When the PreparedStatement is closed or there is an error, the

connection pool manager (being a listener) gets a notification that includes a StatementEvent

object.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

Distributed Transactions

As with pooled connections, connections made via a DataSource object that is implemented to

work with the middle tier infrastructure may participate in distributed transactions. This gives an

application the ability to involve data sources on multiple servers in a single transaction.

The classes and interfaces used for distributed transactions are:

 XADataSource
 XAConnection

These interfaces are used by the transaction manager; an application does not use them directly.

The XAConnection interface is derived from the PooledConnection interface, so what applies

to a pooled connection also applies to a connection that is part of a distributed transaction. A

transaction manager in the middle tier handles everything transparently. The only change in

application code is that an application cannot do anything that would interfere with the

transaction manager's handling of the transaction. Specifically, an application cannot call the

methods Connection.commit or Connection.rollback, and it cannot set the connection to be

in auto-commit mode (that is, it cannot call Connection.setAutoCommit(true)).

An application does not need to do anything special to participate in a distributed transaction. It

simply creates connections to the data sources it wants to use via the

DataSource.getConnection method, just as it normally does. The transaction manager

manages the transaction behind the scenes. The XADataSource interface creates XAConnection

objects, and each XAConnection object creates an XAResource object that the transaction

manager uses to manage the connection.

Rowsets

The RowSet interface works with various other classes and interfaces behind the scenes. These

can be grouped into three categories.

1. Event Notification
o RowSetListener

A RowSet object is a JavaBeansTM component because it has properties and

participates in the JavaBeans event notification mechanism. The RowSetListener

interface is implemented by a component that wants to be notified about events

that occur to a particular RowSet object. Such a component registers itself as a

listener with a rowset via the RowSet.addRowSetListener method.

When the RowSet object changes one of its rows, changes all of it rows, or moves

its cursor, it also notifies each listener that is registered with it. The listener reacts

by carrying out its implementation of the notification method called on it.

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

o RowSetEvent

As part of its internal notification process, a RowSet object creates an instance of

RowSetEvent and passes it to the listener. The listener can use this RowSetEvent

object to find out which rowset had the event.

2. Metadata
o RowSetMetaData

This interface, derived from the ResultSetMetaData interface, provides

information about the columns in a RowSet object. An application can use

RowSetMetaData methods to find out how many columns the rowset contains and

what kind of data each column can contain.

The RowSetMetaData interface provides methods for setting the information

about columns, but an application would not normally use these methods. When

an application calls the RowSet method execute, the RowSet object will contain a

new set of rows, and its RowSetMetaData object will have been internally updated

to contain information about the new columns.

3. The Reader/Writer Facility

A RowSet object that implements the RowSetInternal interface can call on the

RowSetReader object associated with it to populate itself with data. It can also call on the

RowSetWriter object associated with it to write any changes to its rows back to the data

source from which it originally got the rows. A rowset that remains connected to its data

source does not need to use a reader and writer because it can simply operate on the data

source directly.
o RowSetInternal

By implementing the RowSetInternal interface, a RowSet object gets access to

its internal state and is able to call on its reader and writer. A rowset keeps track

of the values in its current rows and of the values that immediately preceded the

current ones, referred to as the original values. A rowset also keeps track of (1)

the parameters that have been set for its command and (2) the connection that was

passed to it, if any. A rowset uses the RowSetInternal methods behind the

scenes to get access to this information. An application does not normally invoke

these methods directly.
o RowSetReader

A disconnected RowSet object that has implemented the RowSetInternal

interface can call on its reader (the RowSetReader object associated with it) to

populate it with data. When an application calls the RowSet.execute method,

that method calls on the rowset's reader to do much of the work. Implementations

can vary widely, but generally a reader makes a connection to the data source,

reads data from the data source and populates the rowset with it, and closes the

connection. A reader may also update the RowSetMetaData object for its rowset.

The rowset's internal state is also updated, either by the reader or directly by the

method RowSet.execute.
o RowSetWriter

A disconnected RowSet object that has implemented the RowSetInternal

interface can call on its writer (the RowSetWriter object associated with it) to

K.Yellaswamy,Assistant Professor|CMR College of Engineering & Technology

Email:toyellaswamy@gmail.com

write changes back to the underlying data source. Implementations may vary

widely, but generally, a writer will do the following:

 Make a connection to the data source

 Check to see whether there is a conflict, that is, whether a value that has

been changed in the rowset has also been changed in the data source

 Write the new values to the data source if there is no conflict

 Close the connection

The RowSet interface may be implemented in any number of ways, and anyone may write an

implementation. Developers are encouraged to use their imaginations in coming up with new

ways to use rowsets.

